Source Separation using Sparse NMF and Graph Regularization on Vietnamese Dataset

Tuan Q. Pham
{"title":"Source Separation using Sparse NMF and Graph Regularization on Vietnamese Dataset","authors":"Tuan Q. Pham","doi":"10.31130/ICT-UD.2020.98","DOIUrl":null,"url":null,"abstract":"Source separation is popular problem in which English datasets is used by default. Besides, source separation or speech enhancement is an important pre-processing step for following processes e.g. automatic speech recognition, automatic answering machine or hearing ads…However, experiments of source separation on Vietnamese dataset is quite modest as well as lack of Vietnamese standard datasets for source separation. To deal these issues, we build a Vietnamese dataset for source separation by collecting utterances of broadcasters from VTV’s official website. Moreover, a novel method was proposed by using sparse non-negative matrix factorization and graph regularization. Experiments showed that the proposed method is outperformed baseline.      ","PeriodicalId":114451,"journal":{"name":"Journal of Science and Technology: Issue on Information and Communications Technology","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology: Issue on Information and Communications Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31130/ICT-UD.2020.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Source separation is popular problem in which English datasets is used by default. Besides, source separation or speech enhancement is an important pre-processing step for following processes e.g. automatic speech recognition, automatic answering machine or hearing ads…However, experiments of source separation on Vietnamese dataset is quite modest as well as lack of Vietnamese standard datasets for source separation. To deal these issues, we build a Vietnamese dataset for source separation by collecting utterances of broadcasters from VTV’s official website. Moreover, a novel method was proposed by using sparse non-negative matrix factorization and graph regularization. Experiments showed that the proposed method is outperformed baseline.      
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏NMF和图正则化的越南语数据源分离
源分离是英语数据集默认使用的一个常见问题。此外,源分离或语音增强是语音自动识别、自动应答机或听力广告等过程的重要预处理步骤,但越南语数据集上的源分离实验很少,缺乏越南语标准的源分离数据集。为了解决这些问题,我们通过收集VTV官方网站播音员的话语,建立了越南语源分离数据集。在此基础上,提出了一种利用稀疏非负矩阵分解和图正则化的方法。实验表明,该方法的性能优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint UAV Trajectory and Data Demand for Scheduling in Wireless Sensor Networks Photovoltaic effect in nanopore based bilayer MoS2 devices Investigating the Performance of SCM/MMW/RoF Optical-Wireless Access System for Next Generation Communications Analysis of First- and Second-Order Digital DS Modulator Used in Fractional-N PLLs Analyzing cancer data in North Vietnam by complex network technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1