{"title":"On Multi-Channel MAC Protocols in Cognitive Radio Networks","authors":"A.K.-L. Yau, P. Komisarczuk, Paul D. Teal","doi":"10.1109/ATNAC.2008.4783340","DOIUrl":null,"url":null,"abstract":"Cognitive Radio (CR) exploits underutilized licensed spectrums to improve its bandwidth availability. Using CR technology, a node is able to adapt its transmission and reception radio parameters including channel frequency dynamically according to local spectrum availability. For channel access between wireless nodes, a cognitive Medium Access Control (MAC) protocol is necessary to coordinate the CRs. Multi-channel MAC protocol extensions have been proposed in IEEE802.11 to enable a node to operate in multiple channels in order to improve network-wide throughput. These multi-channel MAC protocols have several functions that can be leveraged by cognitive MAC protocols due to their similarities in certain aspects, though the CR has an additional requirement to cope with the existence of licensed users that have higher authority over the channels. Current research in cognitive MAC protocols assumes the availability of a common control channel at all times, which is an approach in the multi-channel MAC protocols. This approach has certain hardware requirements that may not be readily available at CR nodes. Hence, other approached may be necessary. In this paper, various types of multi-channel MAC protocols are reviewed, followed by discussion of their merits and demerits in multi-channel environments. The purpose is to show the additional functionalities and challenges that each multi-channel MAC protocol has to offer and address in order to operate in multihop CR networks. By providing discussion on possible technology leverage from multi-channel to cognitive MAC protocols, we aim to establish a foundation for further research and discussion.","PeriodicalId":143803,"journal":{"name":"2008 Australasian Telecommunication Networks and Applications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Australasian Telecommunication Networks and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATNAC.2008.4783340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Cognitive Radio (CR) exploits underutilized licensed spectrums to improve its bandwidth availability. Using CR technology, a node is able to adapt its transmission and reception radio parameters including channel frequency dynamically according to local spectrum availability. For channel access between wireless nodes, a cognitive Medium Access Control (MAC) protocol is necessary to coordinate the CRs. Multi-channel MAC protocol extensions have been proposed in IEEE802.11 to enable a node to operate in multiple channels in order to improve network-wide throughput. These multi-channel MAC protocols have several functions that can be leveraged by cognitive MAC protocols due to their similarities in certain aspects, though the CR has an additional requirement to cope with the existence of licensed users that have higher authority over the channels. Current research in cognitive MAC protocols assumes the availability of a common control channel at all times, which is an approach in the multi-channel MAC protocols. This approach has certain hardware requirements that may not be readily available at CR nodes. Hence, other approached may be necessary. In this paper, various types of multi-channel MAC protocols are reviewed, followed by discussion of their merits and demerits in multi-channel environments. The purpose is to show the additional functionalities and challenges that each multi-channel MAC protocol has to offer and address in order to operate in multihop CR networks. By providing discussion on possible technology leverage from multi-channel to cognitive MAC protocols, we aim to establish a foundation for further research and discussion.