A Platform for Automated Solar Data Analysis Using Machine Learning

O. Younis, Yahya M. Tashtoush, Mohammad H. Alomari, Omar A. Darwish
{"title":"A Platform for Automated Solar Data Analysis Using Machine Learning","authors":"O. Younis, Yahya M. Tashtoush, Mohammad H. Alomari, Omar A. Darwish","doi":"10.1109/SNAMS58071.2022.10062702","DOIUrl":null,"url":null,"abstract":"This paper presents a computer platform for the automated analysis of associations among different solar events and activities. This computer tool enables the advanced learning by implementing many associations' algorithms to analyze years of solar catalogues data and to study the associations among solar flares, eruptive filaments per prominences and Coronal Mass Ejections (CMEs). The aim is to combine all solar data catalogues in one dynamic space weather database that can be easily used in the analysis of solar activities and features. The computer tool identifies patterns of associations and provides numerical representations that can be used as inputs to the machine learning algorithms to provide computerized learning rules that can be developed in the future within the context of a real-time prediction system.","PeriodicalId":371668,"journal":{"name":"2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNAMS58071.2022.10062702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a computer platform for the automated analysis of associations among different solar events and activities. This computer tool enables the advanced learning by implementing many associations' algorithms to analyze years of solar catalogues data and to study the associations among solar flares, eruptive filaments per prominences and Coronal Mass Ejections (CMEs). The aim is to combine all solar data catalogues in one dynamic space weather database that can be easily used in the analysis of solar activities and features. The computer tool identifies patterns of associations and provides numerical representations that can be used as inputs to the machine learning algorithms to provide computerized learning rules that can be developed in the future within the context of a real-time prediction system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习的自动化太阳能数据分析平台
本文提出了一个自动分析不同太阳事件和活动之间联系的计算机平台。这个计算机工具通过实现许多协会的算法来分析多年的太阳目录数据,并研究太阳耀斑、日珥爆发细丝和日冕物质抛射(cme)之间的联系,从而实现了高级学习。其目的是将所有太阳数据目录合并到一个动态空间气象数据库中,以便于分析太阳活动和特征。计算机工具识别关联模式,并提供可作为机器学习算法输入的数字表示,以提供计算机化的学习规则,这些规则可以在未来的实时预测系统中开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classifying Arabian Gulf Tweets to Detect People's Trends: A case study Implicit User Network Analysis of Communication Platform Open Data for Channel Recommendation Anomalous/Relevant Event Detection (A/RED): Active Machine Learning for Finding Rare Events Knowledge Management Role in Enhancing Customer Relationship Management in Hotels Industry in the UK Social Media Acceptance and e-Learning Post-Covid-19: New factors determine the extension of TAM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1