A Fast Clustering Algorithm for Hybrid Big Data Considering the Global Distribution Information of Samples

Wen Tian, Lei Shen
{"title":"A Fast Clustering Algorithm for Hybrid Big Data Considering the Global Distribution Information of Samples","authors":"Wen Tian, Lei Shen","doi":"10.1109/PHM-Yantai55411.2022.9941899","DOIUrl":null,"url":null,"abstract":"In view of the poor clustering accuracy of current hybrid large data fast clustering algorithms, a hybrid large data fast clustering algorithm considering global distribution information is proposed. Rough set algorithm is used to collect mixed data samples considering global distribution information of samples. The original mixed data entropy is calculated to complete the initial data partition. MapReduce is combined with the classical spectral clustering algorithm to complete the hybrid large data clustering analysis. So far, the hybrid big data clustering algorithm considering global distribution information of samples is designed. The experimental findings demonstrate that this method's clustering accuracy is comparatively high and that excellent clustering outcomes may be attained.","PeriodicalId":315994,"journal":{"name":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM-Yantai55411.2022.9941899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the poor clustering accuracy of current hybrid large data fast clustering algorithms, a hybrid large data fast clustering algorithm considering global distribution information is proposed. Rough set algorithm is used to collect mixed data samples considering global distribution information of samples. The original mixed data entropy is calculated to complete the initial data partition. MapReduce is combined with the classical spectral clustering algorithm to complete the hybrid large data clustering analysis. So far, the hybrid big data clustering algorithm considering global distribution information of samples is designed. The experimental findings demonstrate that this method's clustering accuracy is comparatively high and that excellent clustering outcomes may be attained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑样本全局分布信息的混合大数据快速聚类算法
针对目前混合大数据快速聚类算法聚类精度较差的问题,提出了一种考虑全局分布信息的混合大数据快速聚类算法。考虑样本的全局分布信息,采用粗糙集算法采集混合数据样本。计算原始混合数据熵,完成初始数据分区。MapReduce与经典谱聚类算法相结合,完成混合大数据聚类分析。至此,设计了考虑样本全局分布信息的混合大数据聚类算法。实验结果表明,该方法的聚类精度较高,可以获得较好的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abnormal Data Detection Method of Web Database Based on Improved K-Means Algorithm Research on Quantitative Monitoring Method of Milling Tool Wear Condition Based on Multi-Source Data Feature Learning and Extraction Simulation of seasonal variation characteristics of offshore water temperature based on ROMS model Research On Data Mining Of Elderly Inpatients With Chronic Diseases In Panxi Area Badminton Trajectory Accurate Tracking and Positioning Method Based on Machine Vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1