Static and dynamic behavior studies for UHVDC separation pole connection to AC grid

Jing Wang, Minxiao Han, Shunjun Yao, Chunzheng Tian, Ruihua Si, Xiaojun Tang
{"title":"Static and dynamic behavior studies for UHVDC separation pole connection to AC grid","authors":"Jing Wang, Minxiao Han, Shunjun Yao, Chunzheng Tian, Ruihua Si, Xiaojun Tang","doi":"10.1109/APPEEC.2016.7779651","DOIUrl":null,"url":null,"abstract":"With the development of UHVDC technology, the capacity of power transmission is getting increasingly bigger, which will generate a great impact on the receiving power system. This paper proposed a novel separating pole connection (SPC) mode to address this issue. Firstly, the paper introduced the configuration concept of SPC and presented the definition of short circuit ratio for separating pole connection mode (SPCSCR). And the abilities of power transmission related with SPCSCRs under different connection modes were analyzed. Secondly, the overall control strategies for UHVDC SPC mode were studied and suggested independent control systems for two poles respectively. Finally, the dynamic behavior of SPC mode was studied by a case of UHVDC transmission using PSCAD/EMTDC, and the results validated the advantages of this structure, which has great superiority in stable operation and flexible power transmission.","PeriodicalId":117485,"journal":{"name":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2016.7779651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of UHVDC technology, the capacity of power transmission is getting increasingly bigger, which will generate a great impact on the receiving power system. This paper proposed a novel separating pole connection (SPC) mode to address this issue. Firstly, the paper introduced the configuration concept of SPC and presented the definition of short circuit ratio for separating pole connection mode (SPCSCR). And the abilities of power transmission related with SPCSCRs under different connection modes were analyzed. Secondly, the overall control strategies for UHVDC SPC mode were studied and suggested independent control systems for two poles respectively. Finally, the dynamic behavior of SPC mode was studied by a case of UHVDC transmission using PSCAD/EMTDC, and the results validated the advantages of this structure, which has great superiority in stable operation and flexible power transmission.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特高压直流分离极连接交流电网的静动态特性研究
随着特高压直流技术的发展,输电容量越来越大,这将对受电系统产生很大的影响。针对这一问题,提出了一种新型的分离极连接(SPC)方式。本文首先介绍了SPC的组态概念,给出了分离极连接方式(SPCSCR)短路比的定义。分析了不同连接方式下与spcscr相关的输电能力。其次,研究了特高压直流SPC模式的总体控制策略,提出了两极分别独立控制的方案。最后,通过采用PSCAD/EMTDC的特高压直流输电实例,对SPC模式的动态行为进行了研究,结果验证了该结构在稳定运行和灵活输电方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electric Vehicle charging management algorithm for a UK low-voltage residential distribution network An optimization model of EVs charging and discharging for power system demand leveling A circuit approach for the propagation analysis of voltage unbalance emission in power systems A novel high-power AC/AC modular multilevel converter in Y configuration and its control strategy Comprehensive optimization for power system with multiple HVDC infeed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1