AutoShapelet: Reconstructable Time Series Shapelets

Pongsakorn Ajchariyasakchai, T. Rakthanmanon
{"title":"AutoShapelet: Reconstructable Time Series Shapelets","authors":"Pongsakorn Ajchariyasakchai, T. Rakthanmanon","doi":"10.1109/ICSEC51790.2020.9375153","DOIUrl":null,"url":null,"abstract":"Time series shapelets is a snippets of time series that can distinguish one class from others. In the last decade, many researches show that time series shapelets is not only one of the most promising classification techniques, but also a desirable solution because it is simply an explainable result to the experts. However, Two main drawbacks of time series shapelets discovery are speed and the appearance of the candidates and its representative, i.e. the time series shapelets itself. In this paper, we do not improve the running time of discovering the time series shapelets, but we propose a new method to learn the shape of time series shapelets, instead of picking one from candidates. The number of candidates can be vary from ten thousands to millions subsequences or even more depended on the length of the candidates. In this paper, autoencoder technique is applied to reduce the complexity of candidates from the higher-dimensional space to the much smaller-dimensional space, to highlight the potential candidates as the representatives, to learn the shapes of those candidates instead of the individual one, and to reconstruct the more-smooth time series shapelets. Our time series shapelets, named autoshaplets, is not fit to the exact value of the training data anymore, which normally is noisy according to the real observation. The experiment results demonstrate that the new generated shapelets can achieve higher accuracy compared to the exact shapelets, and it is less sensitive to the training data.","PeriodicalId":158728,"journal":{"name":"2020 24th International Computer Science and Engineering Conference (ICSEC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 24th International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC51790.2020.9375153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Time series shapelets is a snippets of time series that can distinguish one class from others. In the last decade, many researches show that time series shapelets is not only one of the most promising classification techniques, but also a desirable solution because it is simply an explainable result to the experts. However, Two main drawbacks of time series shapelets discovery are speed and the appearance of the candidates and its representative, i.e. the time series shapelets itself. In this paper, we do not improve the running time of discovering the time series shapelets, but we propose a new method to learn the shape of time series shapelets, instead of picking one from candidates. The number of candidates can be vary from ten thousands to millions subsequences or even more depended on the length of the candidates. In this paper, autoencoder technique is applied to reduce the complexity of candidates from the higher-dimensional space to the much smaller-dimensional space, to highlight the potential candidates as the representatives, to learn the shapes of those candidates instead of the individual one, and to reconstruct the more-smooth time series shapelets. Our time series shapelets, named autoshaplets, is not fit to the exact value of the training data anymore, which normally is noisy according to the real observation. The experiment results demonstrate that the new generated shapelets can achieve higher accuracy compared to the exact shapelets, and it is less sensitive to the training data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoShapelet:可重构的时间序列Shapelets
时间序列shapelets是时间序列的片段,可以将一个类与其他类区分开来。在过去的十年中,许多研究表明,时间序列shapelets不仅是最有前途的分类技术之一,而且由于它对专家来说是一个简单的可解释的结果,因此是一种理想的解决方案。然而,时间序列shapelets发现的两个主要缺点是速度和候选对象及其代表(即时间序列shapelets本身)的出现。在本文中,我们没有提高发现时间序列shapelets的运行时间,但我们提出了一种新的方法来学习时间序列shapelets的形状,而不是从候选shapelets中选择一个。根据候选序列的长度,候选序列的数量可以从1万个到数百万个不等,甚至更多。本文采用自编码器技术,将候选对象的复杂度从高维空间降低到小维空间,突出潜在候选对象作为代表,学习候选对象的形状而不是单个候选对象的形状,重构更光滑的时间序列shapelets。我们的时间序列小波被称为autoshaplets,它不再适合于训练数据的精确值,根据实际观察,训练数据通常是有噪声的。实验结果表明,新生成的shapelets比原有的shapelets具有更高的精度,并且对训练数据的敏感性较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Astronomical Objects in the Galaxy M81 using Machine Learning Techniques A framework for cross-datasources agricultural research-to-impact analysis Abnormality Detection in Musculoskeletal Radiographs using EfficientNets Drowsiness Detection using Facial Emotions and Eye Aspect Ratios Approximating k-Connected m-Dominating Sets in Disk Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1