Towards a Twitter observatory: A multi-paradigm framework for collecting, storing and analysing tweets

Ian Basaille, Sergey Kirgizov, É. Leclercq, M. Savonnet, N. Cullot
{"title":"Towards a Twitter observatory: A multi-paradigm framework for collecting, storing and analysing tweets","authors":"Ian Basaille, Sergey Kirgizov, É. Leclercq, M. Savonnet, N. Cullot","doi":"10.1109/RCIS.2016.7549324","DOIUrl":null,"url":null,"abstract":"In this article we show how a multi-paradigm framework can fulfil the requirements of tweets analysis and reduce the waiting time for researchers that use computational resources and storage systems to support large-scale data analysis. The originality of our approach is to combine concerns about data harvesting, data storage, data analysis and data visualisation into a framework that supports inductive reasoning in multidisciplinary scientific research. Our main contribution is a polyglot storage system with a generic data model to support logical data independence and a set of tools that can provide a suitable solution for mixing different types of algorithms in order to maximise the extraction of knowledge. We describe the software architecture of our framework, the generic model and we show how it has been used in major projects and what characteristics have been validated.","PeriodicalId":344289,"journal":{"name":"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2016.7549324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this article we show how a multi-paradigm framework can fulfil the requirements of tweets analysis and reduce the waiting time for researchers that use computational resources and storage systems to support large-scale data analysis. The originality of our approach is to combine concerns about data harvesting, data storage, data analysis and data visualisation into a framework that supports inductive reasoning in multidisciplinary scientific research. Our main contribution is a polyglot storage system with a generic data model to support logical data independence and a set of tools that can provide a suitable solution for mixing different types of algorithms in order to maximise the extraction of knowledge. We describe the software architecture of our framework, the generic model and we show how it has been used in major projects and what characteristics have been validated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向推特观测站:收集、存储和分析推特的多范式框架
在本文中,我们展示了一个多范式框架如何满足推文分析的要求,并减少使用计算资源和存储系统来支持大规模数据分析的研究人员的等待时间。我们的方法的独创性在于将对数据收集、数据存储、数据分析和数据可视化的关注结合到一个框架中,该框架支持多学科科学研究中的归纳推理。我们的主要贡献是一个多语言存储系统,它具有一个通用的数据模型来支持逻辑数据独立性,以及一组工具,可以为混合不同类型的算法提供合适的解决方案,以最大限度地提取知识。我们描述了我们的框架的软件架构,通用模型,并展示了它是如何在主要项目中使用的,以及验证了哪些特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fuzzy extension of SPARQL for querying gradual RDF data Incorporating privacy patterns into semi-automatic business process derivation Conceptual schema of miRNA's expression: Using efficient information systems practices to manage and analyse data about miRNA expression studies in breast cancer A generic architecture for spatial crowdsourcing Increasing secondary diagnosis encoding quality using data mining techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1