Resource-Efficient Federated Learning Robust to Communication Errors

Ehsan Lari, Vinay Chakravarthi Gogineni, R. Arablouei, Stefan Werner
{"title":"Resource-Efficient Federated Learning Robust to Communication Errors","authors":"Ehsan Lari, Vinay Chakravarthi Gogineni, R. Arablouei, Stefan Werner","doi":"10.1109/SSP53291.2023.10208024","DOIUrl":null,"url":null,"abstract":"The effectiveness of federated learning (FL) in leveraging distributed datasets is highly contingent upon the accuracy of model exchanges between clients and servers. Communication errors caused by noisy links can negatively impact learning accuracy. To address this issue, we present an FL algorithm that is robust to communication errors while reducing the communication load on clients. To derive the proposed algorithm, we consider a weighted least-squares regression problem as a motivating example. We cast the considered problem as a distributed optimization problem over a federated network, which employs random scheduling to enhance communication efficiency, and solve it using the alternating direction method of multipliers. To improve robustness, we eliminate the local dual parameters and reduce the number of global model exchanges via a change of variable. We analyze the mean convergence of our proposed algorithm and demonstrate its effectiveness compared with related existing algorithms via simulations.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The effectiveness of federated learning (FL) in leveraging distributed datasets is highly contingent upon the accuracy of model exchanges between clients and servers. Communication errors caused by noisy links can negatively impact learning accuracy. To address this issue, we present an FL algorithm that is robust to communication errors while reducing the communication load on clients. To derive the proposed algorithm, we consider a weighted least-squares regression problem as a motivating example. We cast the considered problem as a distributed optimization problem over a federated network, which employs random scheduling to enhance communication efficiency, and solve it using the alternating direction method of multipliers. To improve robustness, we eliminate the local dual parameters and reduce the number of global model exchanges via a change of variable. We analyze the mean convergence of our proposed algorithm and demonstrate its effectiveness compared with related existing algorithms via simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对通信错误具有鲁棒性的资源高效联邦学习
联邦学习(FL)在利用分布式数据集方面的有效性高度依赖于客户端和服务器之间模型交换的准确性。噪声链路导致的通信错误会对学习的准确性产生负面影响。为了解决这个问题,我们提出了一种对通信错误具有鲁棒性的FL算法,同时减少了客户端的通信负载。为了推导所提出的算法,我们考虑一个加权最小二乘回归问题作为一个激励例子。我们将所考虑的问题转化为联邦网络上的分布式优化问题,采用随机调度来提高通信效率,并使用乘法器的交替方向方法进行求解。为了提高鲁棒性,我们消除了局部对偶参数,并通过变量的改变减少了全局模型交换的次数。我们分析了所提算法的平均收敛性,并通过仿真验证了其与现有相关算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1