{"title":"Terrain height estimation using GMTI radar","authors":"C. Morgan, S. Jaroszewski, P. Mountcastle","doi":"10.1109/NRC.2004.1316453","DOIUrl":null,"url":null,"abstract":"We simulate the performance of existing and planned tactical GMTI (ground moving target indicator) systems using data cubes derived from high-fidelity interferometric SAR measurements, to assess the utility of these GMTI systems for an auxiliary terrain height estimation function. The two systems are current and next generation GMTI radars with linear and planar arrays, respectively, that could be mounted on a manned aircraft or a large UAV. In order to achieve the vertical element separation required for interferometric terrain height estimation, the antenna array in the first case must be pitched up relative to the horizontal position that is ordinarily used for DPCA or STAP clutter suppression. The purpose of the study is to determine whether useable terrain elevation maps can be generated by interferometric techniques within the operational constraints of these systems. Such elevation map data, obtained using a GMTI radar, would be valuable to knowledge-aided algorithms which rely on precise three-dimensional registration of radar data with terrain or road databases.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We simulate the performance of existing and planned tactical GMTI (ground moving target indicator) systems using data cubes derived from high-fidelity interferometric SAR measurements, to assess the utility of these GMTI systems for an auxiliary terrain height estimation function. The two systems are current and next generation GMTI radars with linear and planar arrays, respectively, that could be mounted on a manned aircraft or a large UAV. In order to achieve the vertical element separation required for interferometric terrain height estimation, the antenna array in the first case must be pitched up relative to the horizontal position that is ordinarily used for DPCA or STAP clutter suppression. The purpose of the study is to determine whether useable terrain elevation maps can be generated by interferometric techniques within the operational constraints of these systems. Such elevation map data, obtained using a GMTI radar, would be valuable to knowledge-aided algorithms which rely on precise three-dimensional registration of radar data with terrain or road databases.