Compressed Sensing for Wideband HF Channel Estimation

E. C. Marques, N. Maciel, L. Naviner, Hao Cai, Jun Yang
{"title":"Compressed Sensing for Wideband HF Channel Estimation","authors":"E. C. Marques, N. Maciel, L. Naviner, Hao Cai, Jun Yang","doi":"10.1109/ICFSP.2018.8552050","DOIUrl":null,"url":null,"abstract":"Compressive sensing theory is suitable for sparse channel estimation, since the acquired measurement can be reduced in comparison with linear estimation methods. In this paper, we analyze the wideband HF channel estimation. Experimental results demonstrate that this channel is sparse in the delay spread domain. Moreover, the use of sparse recovery algorithms achieves better results in terms of Mean-Square Deviation than the Least Square algorithm.","PeriodicalId":355222,"journal":{"name":"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFSP.2018.8552050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Compressive sensing theory is suitable for sparse channel estimation, since the acquired measurement can be reduced in comparison with linear estimation methods. In this paper, we analyze the wideband HF channel estimation. Experimental results demonstrate that this channel is sparse in the delay spread domain. Moreover, the use of sparse recovery algorithms achieves better results in terms of Mean-Square Deviation than the Least Square algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于压缩感知的宽带高频信道估计
压缩感知理论适用于稀疏信道估计,因为与线性估计方法相比,获得的测量值可以减少。本文主要对宽带高频信道估计进行了分析。实验结果表明,该信道在延迟扩展域中是稀疏的。此外,使用稀疏恢复算法在均方偏差方面比最小二乘算法取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-body Sensing and Signal Analysis for User Experience Recognition in Human-Machine Interaction Objective Approach of 3G/4G Networks Indoor RF Coverage Assessment Statistical Compressive Sensing for Efficient Signal Reconstruction and Classification Towards Empowering Cyber Attack Resiliency Using Steganography Filtering Nonuniformly Sampled Grid-Based Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1