Mood avatar: automatic text-driven head motion synthesis

Kaihui Mu, J. Tao, Jianfeng Che, Minghao Yang
{"title":"Mood avatar: automatic text-driven head motion synthesis","authors":"Kaihui Mu, J. Tao, Jianfeng Che, Minghao Yang","doi":"10.1145/1891903.1891951","DOIUrl":null,"url":null,"abstract":"Natural head motion is an indispensable part of realistic facial animation. This paper presents a novel approach to synthesize natural head motion automatically based on grammatical and prosodic features, which are extracted by the text analysis part of a Chinese Text-to-Speech (TTS) system. A two-layer clustering method is proposed to determine elementary head motion patterns from a multimodal database which covers six emotional states. The mapping problem between textual information and elementary head motion patterns is modeled by Classification and Regression Trees (CART). With the emotional state specified by users, results from text analysis are utilized to drive corresponding CART model to create emotional head motion sequence. Then, the generated sequence is interpolated by spineand us ed to drive a Chinese text-driven avatar. The comparison experiment indicates that this approach provides a better head motion and an engaging human-computer comparing to random or none head motion.","PeriodicalId":181145,"journal":{"name":"ICMI-MLMI '10","volume":"511 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMI-MLMI '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1891903.1891951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Natural head motion is an indispensable part of realistic facial animation. This paper presents a novel approach to synthesize natural head motion automatically based on grammatical and prosodic features, which are extracted by the text analysis part of a Chinese Text-to-Speech (TTS) system. A two-layer clustering method is proposed to determine elementary head motion patterns from a multimodal database which covers six emotional states. The mapping problem between textual information and elementary head motion patterns is modeled by Classification and Regression Trees (CART). With the emotional state specified by users, results from text analysis are utilized to drive corresponding CART model to create emotional head motion sequence. Then, the generated sequence is interpolated by spineand us ed to drive a Chinese text-driven avatar. The comparison experiment indicates that this approach provides a better head motion and an engaging human-computer comparing to random or none head motion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情绪化身:自动文本驱动的头部运动合成
自然的头部运动是逼真的面部动画不可缺少的一部分。本文提出了一种基于汉语文本到语音(TTS)系统文本分析部分提取的语法和韵律特征自动合成自然头部运动的新方法。提出了一种两层聚类方法,从包含六种情绪状态的多模态数据库中确定基本头部运动模式。利用分类回归树(CART)对文本信息与基本头部运动模式之间的映射问题进行建模。根据用户指定的情绪状态,利用文本分析结果驱动相应的CART模型,生成情绪头部运动序列。然后,将生成的序列通过spine进行插值,并驱动一个中文文本驱动的化身。对比实验表明,与随机或无头部运动相比,该方法提供了更好的头部运动和引人入胜的人机交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feedback is... late: measuring multimodal delays in mobile device touchscreen interaction Conversation scene analysis based on dynamic Bayesian network and image-based gaze detection The Ambient Spotlight: personal multimodal search without query Musical performance as multimodal communication: drummers, musical collaborators, and listeners Automatic recognition of sign language subwords based on portable accelerometer and EMG sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1