{"title":"Improving the Character Ngram Model for the DSL Task with BM25 Weighting and Less Frequently Used Feature Sets","authors":"Yves Bestgen","doi":"10.18653/v1/W17-1214","DOIUrl":null,"url":null,"abstract":"This paper describes the system developed by the Centre for English Corpus Linguistics (CECL) to discriminating similar languages, language varieties and dialects. Based on a SVM with character and POStag n-grams as features and the BM25 weighting scheme, it achieved 92.7% accuracy in the Discriminating between Similar Languages (DSL) task, ranking first among eleven systems but with a lead over the next three teams of only 0.2%. A simpler version of the system ranked second in the German Dialect Identification (GDI) task thanks to several ad hoc postprocessing steps. Complementary analyses carried out by a cross-validation procedure suggest that the BM25 weighting scheme could be competitive in this type of tasks, at least in comparison with the sublinear TF-IDF. POStag n-grams also improved the system performance.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on NLP for Similar Languages, Varieties and Dialects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-1214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
This paper describes the system developed by the Centre for English Corpus Linguistics (CECL) to discriminating similar languages, language varieties and dialects. Based on a SVM with character and POStag n-grams as features and the BM25 weighting scheme, it achieved 92.7% accuracy in the Discriminating between Similar Languages (DSL) task, ranking first among eleven systems but with a lead over the next three teams of only 0.2%. A simpler version of the system ranked second in the German Dialect Identification (GDI) task thanks to several ad hoc postprocessing steps. Complementary analyses carried out by a cross-validation procedure suggest that the BM25 weighting scheme could be competitive in this type of tasks, at least in comparison with the sublinear TF-IDF. POStag n-grams also improved the system performance.