Fine-Tuning BERT with Character-Level Noise for Zero-Shot Transfer to Dialects and Closely-Related Languages

Aarohi Srivastava, David Chiang
{"title":"Fine-Tuning BERT with Character-Level Noise for Zero-Shot Transfer to Dialects and Closely-Related Languages","authors":"Aarohi Srivastava, David Chiang","doi":"10.48550/arXiv.2303.17683","DOIUrl":null,"url":null,"abstract":"In this work, we induce character-level noise in various forms when fine-tuning BERT to enable zero-shot cross-lingual transfer to unseen dialects and languages. We fine-tune BERT on three sentence-level classification tasks and evaluate our approach on an assortment of unseen dialects and languages. We find that character-level noise can be an extremely effective agent of cross-lingual transfer under certain conditions, while it is not as helpful in others. Specifically, we explore these differences in terms of the nature of the task and the relationships between source and target languages, finding that introduction of character-level noise during fine-tuning is particularly helpful when a task draws on surface level cues and the source-target cross-lingual pair has a relatively high lexical overlap with shorter (i.e., less meaningful) unseen tokens on average.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on NLP for Similar Languages, Varieties and Dialects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.17683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we induce character-level noise in various forms when fine-tuning BERT to enable zero-shot cross-lingual transfer to unseen dialects and languages. We fine-tune BERT on three sentence-level classification tasks and evaluate our approach on an assortment of unseen dialects and languages. We find that character-level noise can be an extremely effective agent of cross-lingual transfer under certain conditions, while it is not as helpful in others. Specifically, we explore these differences in terms of the nature of the task and the relationships between source and target languages, finding that introduction of character-level noise during fine-tuning is particularly helpful when a task draws on surface level cues and the source-target cross-lingual pair has a relatively high lexical overlap with shorter (i.e., less meaningful) unseen tokens on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有字符级噪声的微调BERT用于方言和密切相关语言的零射击迁移
在这项工作中,我们在微调BERT时引入了各种形式的字符级噪声,以实现零采样跨语言迁移到看不见的方言和语言。我们在三个句子级别的分类任务上对BERT进行微调,并在各种看不见的方言和语言上评估我们的方法。我们发现,在某些条件下,字符级噪声可能是跨语言迁移的一个非常有效的代理,而在其他情况下则没有那么有用。具体来说,我们从任务的性质以及源语言和目标语言之间的关系方面探讨了这些差异,发现在微调过程中引入字符级噪声在任务利用表面水平线索时特别有用,并且源-目标跨语言对平均具有相对较高的词汇重叠,其中包含较短(即意义较小)的未见标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fine-Tuning BERT with Character-Level Noise for Zero-Shot Transfer to Dialects and Closely-Related Languages ZHAW-InIT - Social Media Geolocation at VarDial 2020 CLUZH at VarDial GDI 2017: Testing a Variety of Machine Learning Tools for the Classification of Swiss German Dialects Learning to Identify Arabic and German Dialects using Multiple Kernels Investigating Diatopic Variation in a Historical Corpus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1