{"title":"A Coverage-Based Approach to Recommendation Diversity On Similarity Graph","authors":"S. P. Parambath, Nicolas Usunier, Yves Grandvalet","doi":"10.1145/2959100.2959149","DOIUrl":null,"url":null,"abstract":"We consider the problem of generating diverse, personalized recommendations such that a small set of recommended items covers a broad range of the user's interests. We represent items in a similarity graph, and we formulate the relevance/diversity trade-off as finding a small set of unrated items that best covers a subset of items positively rated by the user. In contrast to previous approaches, our method does not rely on an explicit trade-off between a relevance objective and a diversity objective, as the estimations of relevance and diversity are implicit in the coverage criterion. We show on several benchmark datasets that our approach compares favorably to the state-of-the-art diversification methods according to various relevance and diversity measures.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87
Abstract
We consider the problem of generating diverse, personalized recommendations such that a small set of recommended items covers a broad range of the user's interests. We represent items in a similarity graph, and we formulate the relevance/diversity trade-off as finding a small set of unrated items that best covers a subset of items positively rated by the user. In contrast to previous approaches, our method does not rely on an explicit trade-off between a relevance objective and a diversity objective, as the estimations of relevance and diversity are implicit in the coverage criterion. We show on several benchmark datasets that our approach compares favorably to the state-of-the-art diversification methods according to various relevance and diversity measures.