Central Air Conditioning Systems with Partial Indirect Evaporative Cooling and Utilization of Cold and Heat of Ventilation Emissions

Mykhaylo Bozhenko, Tatiana Izhevska
{"title":"Central Air Conditioning Systems with Partial Indirect Evaporative Cooling and Utilization of Cold and Heat of Ventilation Emissions","authors":"Mykhaylo Bozhenko, Tatiana Izhevska","doi":"10.20998/2078-774x.2021.04.05","DOIUrl":null,"url":null,"abstract":"A promising trend in air conditioning systems is the use of indirect evaporative cooling, but in the classic version it is effective in dry and hot climates. For the need to maintain comfortable air parameters in public buildings, it is not possible to fully implement such a process in the conditions of Ukraine (the relative humidity of the outside air ranges from 63 to 75 %). The aim of the work is to increase the energy efficiency of air conditioning systems with standard equipment through partial evaporative cooling and use for cooling water in cooling towers of the air removed from the rooms during the warm season, and in the cold season - use of the exhaust air for preheating the supply air in heat exchanger. A corresponding system diagram was developed and computational studies of a direct-flow circuit and a circuit with recirculation were carried out for one of the educational buildings of the Igor Sikorsky Kyiv Polytechnic Institute. According to the results of calculating the direct-flow circuit in the warm period, the energy efficiency of indirect evaporative cooling was 23.5 %. The annual amount of recovered heat of ventilation emissions for this scheme in the cold period was 3731 GJ / year, and the economic effect - 1473185 UAH / year. For a circuit with recirculation during a warm period, the greatest effect of indirect evaporative cooling is achieved with a recirculation rate of 10 %, and for the overall decrease in the cooling capacity of the air conditioner during this period the greatest impact is not indirect evaporative cooling, but recirculation. In the cold season, the greatest utilization effect is also achieved with a 10 % recirculation rate.","PeriodicalId":416126,"journal":{"name":"NTU \"KhPI\" Bulletin: Power and heat engineering processes and equipment","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NTU \"KhPI\" Bulletin: Power and heat engineering processes and equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2078-774x.2021.04.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A promising trend in air conditioning systems is the use of indirect evaporative cooling, but in the classic version it is effective in dry and hot climates. For the need to maintain comfortable air parameters in public buildings, it is not possible to fully implement such a process in the conditions of Ukraine (the relative humidity of the outside air ranges from 63 to 75 %). The aim of the work is to increase the energy efficiency of air conditioning systems with standard equipment through partial evaporative cooling and use for cooling water in cooling towers of the air removed from the rooms during the warm season, and in the cold season - use of the exhaust air for preheating the supply air in heat exchanger. A corresponding system diagram was developed and computational studies of a direct-flow circuit and a circuit with recirculation were carried out for one of the educational buildings of the Igor Sikorsky Kyiv Polytechnic Institute. According to the results of calculating the direct-flow circuit in the warm period, the energy efficiency of indirect evaporative cooling was 23.5 %. The annual amount of recovered heat of ventilation emissions for this scheme in the cold period was 3731 GJ / year, and the economic effect - 1473185 UAH / year. For a circuit with recirculation during a warm period, the greatest effect of indirect evaporative cooling is achieved with a recirculation rate of 10 %, and for the overall decrease in the cooling capacity of the air conditioner during this period the greatest impact is not indirect evaporative cooling, but recirculation. In the cold season, the greatest utilization effect is also achieved with a 10 % recirculation rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分间接蒸发冷却的中央空调系统及通风排放的冷热利用
空调系统的一个有前途的趋势是使用间接蒸发冷却,但在经典版本中,它在干燥和炎热的气候下有效。为了在公共建筑中保持舒适的空气参数,在乌克兰的条件下不可能完全实施这样的过程(外部空气的相对湿度范围为63%至75%)。这项工作的目的是通过部分蒸发冷却来提高标准设备空调系统的能源效率,并在温暖的季节将从房间取出的空气用于冷却塔的冷却水,在寒冷的季节-使用排风预热热交换器中的送风。开发了相应的系统图,并对伊戈尔西科斯基基辅理工学院的一个教育建筑进行了直接流动电路和再循环电路的计算研究。根据暖期直流回路的计算结果,间接蒸发冷却的能源效率为23.5%。该方案冷期通风排放的年回收热量为3731 GJ /年,经济效益为1473185 UAH /年。对于暖期有再循环的回路,间接蒸发冷却的效果在再循环率为10%时达到最大,而对于暖期空调制冷量的整体下降影响最大的不是间接蒸发冷却,而是再循环。在寒冷季节,10%的再循环率也达到了最大的利用效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Construction Materials of Active Zones of New Generation Nuclear Reactors Reducing the Harmful Impact of Boiler Plants on the Environment Methodology for calculating hydrogenerators in strength problemsMethodology for Calculating Hydrogenerators in Strength Problems Improving the Efficiency of the Furnace Process of Low-Temperature Low-Capacity Furnaces Methodology for Determining the Tension of Banding Rings of Medium-Power Turbogenerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1