Convergence properties of a Continuous-Time Multiple-Model Adaptive Estimator

Antonio Pedro Aguiar, M. Athans, A. Pascoal
{"title":"Convergence properties of a Continuous-Time Multiple-Model Adaptive Estimator","authors":"Antonio Pedro Aguiar, M. Athans, A. Pascoal","doi":"10.23919/ECC.2007.7068291","DOIUrl":null,"url":null,"abstract":"We present and study a Continuous-Time Multiple-Model Adaptive Estimator (CT-MMAE) for state-affine multiple-input-multiple output (MIMO) systems with parametric uncertainty. The CT-MMAE is composed by a bank of local observers (typically Kalman filters) where each observer uses one element of a finite discrete parameter set in its implementation. The state estimate is given by a weighted sum of the estimates produced by the bank of observers. We show, for the case where the unknown noise and disturbance are L2 signals, and under appropriate observability assumptions, that if the actual plant parameter is identical to one of its discrete values, the state estimate converges globally asymptotically to the true value and the plant model is correctly identified. If the actual plant parameter vector does not belong to the finite discrete parameter set, we provide upper bounds to state and parameter estimation errors. Some deterministic and stochastic simulation results are presented and discussed.","PeriodicalId":407048,"journal":{"name":"2007 European Control Conference (ECC)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2007.7068291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We present and study a Continuous-Time Multiple-Model Adaptive Estimator (CT-MMAE) for state-affine multiple-input-multiple output (MIMO) systems with parametric uncertainty. The CT-MMAE is composed by a bank of local observers (typically Kalman filters) where each observer uses one element of a finite discrete parameter set in its implementation. The state estimate is given by a weighted sum of the estimates produced by the bank of observers. We show, for the case where the unknown noise and disturbance are L2 signals, and under appropriate observability assumptions, that if the actual plant parameter is identical to one of its discrete values, the state estimate converges globally asymptotically to the true value and the plant model is correctly identified. If the actual plant parameter vector does not belong to the finite discrete parameter set, we provide upper bounds to state and parameter estimation errors. Some deterministic and stochastic simulation results are presented and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种连续时间多模型自适应估计器的收敛性
针对具有参数不确定性的状态仿射多输入多输出(MIMO)系统,提出并研究了一种连续多模型自适应估计器(CT-MMAE)。CT-MMAE由一组局部观测器(通常是卡尔曼滤波器)组成,其中每个观测器在其实现中使用有限离散参数集的一个元素。状态估计是由一群观察者给出的估计的加权总和。我们表明,对于未知噪声和干扰是L2信号的情况,在适当的可观察性假设下,如果实际的植物参数与其离散值之一相同,则状态估计全局渐近收敛于真值,并且植物模型被正确识别。如果实际植物参数向量不属于有限离散参数集,我们给出了状态和参数估计误差的上界。给出并讨论了一些确定性和随机模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Likelihood estimation of state space models from frequency domain data Output feedback H∞ control of continuous-time infinite Markovian jump linear systems via LMI methods Visual servoing of a parallel robot system Comparison between SOS approach and Slack Variable approach for non-negativity check of polynomial functions: Multiple variable case Integrating Hamiltonian systems defined on the Lie groups SO(4) and SO(1,3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1