A Convolutional Neural Network Model for Privacy-Sensitive Ultra-Wideband Radar-Based Human Static Posture Classification and Fall Detection

Khirakorn Thipprachak, P. Tangamchit, S. Lerspalungsanti
{"title":"A Convolutional Neural Network Model for Privacy-Sensitive Ultra-Wideband Radar-Based Human Static Posture Classification and Fall Detection","authors":"Khirakorn Thipprachak, P. Tangamchit, S. Lerspalungsanti","doi":"10.1109/SSP53291.2023.10208028","DOIUrl":null,"url":null,"abstract":"A reliable fall detection system can enhance the safety of senior citizens by detecting falls in private areas, such as restrooms, where accidents may go unnoticed. This study aimed to create a static human posture recognition system with a possibility of extension for detecting falls in private areas. The system used ultra-wideband (UWB) sensors to detect human body gestures and analyze an individual's posture to determine a laydown posture, which is abnormal in restroom usage. UWB is capable of protecting human privacy because its output contains limited information. This study implemented a convolutional neural network (CNN) model that classified signals from an ultra-wideband sensor in a bathroom into four categories: standing, sitting, lying down, and nobody. This paper proposes a CNN classifier with an overall accuracy of 93%. These results demonstrate the capability of the proposed system to recognize static human posture in private locations.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A reliable fall detection system can enhance the safety of senior citizens by detecting falls in private areas, such as restrooms, where accidents may go unnoticed. This study aimed to create a static human posture recognition system with a possibility of extension for detecting falls in private areas. The system used ultra-wideband (UWB) sensors to detect human body gestures and analyze an individual's posture to determine a laydown posture, which is abnormal in restroom usage. UWB is capable of protecting human privacy because its output contains limited information. This study implemented a convolutional neural network (CNN) model that classified signals from an ultra-wideband sensor in a bathroom into four categories: standing, sitting, lying down, and nobody. This paper proposes a CNN classifier with an overall accuracy of 93%. These results demonstrate the capability of the proposed system to recognize static human posture in private locations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于隐私敏感超宽带雷达的人体静态姿态分类与跌倒检测卷积神经网络模型
一个可靠的跌倒检测系统可以通过检测洗手间等私人区域的跌倒来提高老年人的安全,这些区域的事故可能会被忽视。本研究旨在创建一个静态人体姿势识别系统,该系统可以扩展到检测私人区域的跌倒。该系统使用超宽带(UWB)传感器来检测人体手势,并分析一个人的姿势,以确定躺下的姿势,这在厕所使用时是不正常的。超宽带能够保护人类隐私,因为它的输出包含有限的信息。这项研究实现了一个卷积神经网络(CNN)模型,该模型将浴室中超宽带传感器发出的信号分为四类:站立、坐着、躺着和没有人。本文提出了一种总体准确率为93%的CNN分类器。这些结果证明了所提出的系统在私人场所识别静态人体姿势的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1