A Complexity Analysis Approach for Model-based System Engineering

Zhenchao Hu, Jinzhi Lu, Jinwei Chen, Xiaochen Zheng, D. Kyritsis, Hui-sheng Zhang
{"title":"A Complexity Analysis Approach for Model-based System Engineering","authors":"Zhenchao Hu, Jinzhi Lu, Jinwei Chen, Xiaochen Zheng, D. Kyritsis, Hui-sheng Zhang","doi":"10.1109/SoSE50414.2020.9130478","DOIUrl":null,"url":null,"abstract":"With the increasing complexity of the highly engineered products, Model-based Systems Engineering (MBSE) is proposed to support the complexity management of the product development. As the basic of complexity management, complexity analysis is used to measure the system complexity for system solution trade-offs. Using traditional MBSE approaches, system architectures of product are formalized as MBSE models whose complexity measurement provides cues to quantitative trade-offs. In this paper, an MBSE approach is proposed to support complex analysis using qualitative and quantitative approaches. A GOPPRR approach is first proposed to support MBSE formalisms. Then a complexity measurement formula is used to calculate the structure complexity of the MBSE models. Finally, through a tool-chain developed based on Open Services for Lifecycle Collaboration (OSLC), a visualization tool is used to analyze the system complexity by measuring and visualizing the model complexity. A case study is proposed to evaluate the potentials of this approach for supporting product trade-offs. From the results, the approach enables to calculate complexity of MBSE models and virtualizes the model topologies.","PeriodicalId":121664,"journal":{"name":"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoSE50414.2020.9130478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the increasing complexity of the highly engineered products, Model-based Systems Engineering (MBSE) is proposed to support the complexity management of the product development. As the basic of complexity management, complexity analysis is used to measure the system complexity for system solution trade-offs. Using traditional MBSE approaches, system architectures of product are formalized as MBSE models whose complexity measurement provides cues to quantitative trade-offs. In this paper, an MBSE approach is proposed to support complex analysis using qualitative and quantitative approaches. A GOPPRR approach is first proposed to support MBSE formalisms. Then a complexity measurement formula is used to calculate the structure complexity of the MBSE models. Finally, through a tool-chain developed based on Open Services for Lifecycle Collaboration (OSLC), a visualization tool is used to analyze the system complexity by measuring and visualizing the model complexity. A case study is proposed to evaluate the potentials of this approach for supporting product trade-offs. From the results, the approach enables to calculate complexity of MBSE models and virtualizes the model topologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的系统工程的复杂性分析方法
随着高度工程化产品复杂性的增加,基于模型的系统工程(MBSE)被提出来支持产品开发的复杂性管理。复杂性分析是复杂性管理的基础,用于衡量系统解决方案的复杂性。使用传统的MBSE方法,产品的系统架构被形式化为MBSE模型,其复杂性度量为定量权衡提供线索。在本文中,提出了一种MBSE方法来支持使用定性和定量方法的复杂分析。首先提出了一种支持MBSE形式化的GOPPRR方法。然后用复杂度度量公式计算了MBSE模型的结构复杂度。最后,通过基于生命周期协作开放服务(Open Services for Lifecycle Collaboration, OSLC)开发的工具链,通过测量和可视化模型复杂性,使用可视化工具分析系统复杂性。提出了一个案例研究来评估这种方法在支持产品权衡方面的潜力。根据结果,该方法可以计算MBSE模型的复杂性并对模型拓扑进行虚拟化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilizing the spectral properties of weighted data flow graphs for designing railway signaling systems The System (of Interest) Definitions phase: Key features and challenges in the Dutch Railway system Fuzzy Architecture Description for Handling Uncertainty in IoT Systems-of-Systems Comparison of algorithms for dimensionality reduction and their application to index generation functions Elderly Health Promotion using Multiple Ball-robots based on Evolutionary Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1