Balance learning to rank in big data

G. Cao, I. Ahmad, Honglei Zhang, Weiyi Xie, M. Gabbouj
{"title":"Balance learning to rank in big data","authors":"G. Cao, I. Ahmad, Honglei Zhang, Weiyi Xie, M. Gabbouj","doi":"10.5281/ZENODO.44026","DOIUrl":null,"url":null,"abstract":"We propose a distributed learning to rank method, and demonstrate its effectiveness in web-scale image retrieval. With the increasing amount of data, it is not applicable to train a centralized ranking model for any large scale learning problems. In distributed learning, the discrepancy between the training subsets and the whole when building the models are non-trivial but overlooked in the previous work. In this paper, we firstly include a cost factor to boosting algorithms to balance the individual models toward the whole data. Then, we propose to decompose the original algorithm to multiple layers, and their aggregation forms a superior ranker which can be easily scaled up to billions of images. The extensive experiments show the proposed method outperforms the straightforward aggregation of boosting algorithms.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a distributed learning to rank method, and demonstrate its effectiveness in web-scale image retrieval. With the increasing amount of data, it is not applicable to train a centralized ranking model for any large scale learning problems. In distributed learning, the discrepancy between the training subsets and the whole when building the models are non-trivial but overlooked in the previous work. In this paper, we firstly include a cost factor to boosting algorithms to balance the individual models toward the whole data. Then, we propose to decompose the original algorithm to multiple layers, and their aggregation forms a superior ranker which can be easily scaled up to billions of images. The extensive experiments show the proposed method outperforms the straightforward aggregation of boosting algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平衡学习,在大数据中排名
我们提出了一种分布式学习排序方法,并证明了其在web规模图像检索中的有效性。随着数据量的不断增加,对于任何大规模的学习问题,都不适合训练集中式排名模型。在分布式学习中,在建立模型时,训练子集与整体之间的差异很重要,但在以前的工作中被忽略了。在本文中,我们首先在增强算法中加入一个成本因素,以平衡单个模型与整个数据。然后,我们提出将原始算法分解为多个层,它们的聚合形成一个更高级的秩,可以很容易地扩展到数十亿张图像。大量的实验表明,该方法优于直接聚合的增强算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved chirp group delay based algorithm for estimating the vocal tract response Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion Adaptive waveform selection and target tracking by wideband multistatic radar/sonar systems Exploiting time and frequency information for Delay/Doppler altimetry Merging extremum seeking and self-optimizing narrowband interference canceller - overdetermined case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1