Integrated multi-objective predictive control for multi-unit system

Arvind Ravi, N. Kaisare
{"title":"Integrated multi-objective predictive control for multi-unit system","authors":"Arvind Ravi, N. Kaisare","doi":"10.1109/ICC47138.2019.9123152","DOIUrl":null,"url":null,"abstract":"An integrated architecture comprising of a state estimator, dynamic optimizer and model predictive control (MPC) is designed in this work for an output feedback multi-objective control of a process system involving multiple units. The output feedback control uses a multi-rate extended Kalman Filter (EKF) for state estimation. Measurement delays in the arrival of the measurements of the infrequently sampled primary process variable are fused using a computationally efficient sampled-state augmentation approach. Certainty equivalence is assumed, and the state estimates are used by a dynamic multi-objective optimizer (D-MOO) followed by the coordinator MPC to implement feasible inputs to the plant. The trade-off between multiple objectives are handled by the D-MOO using the augmented -constraint method (AUGMECON) to generate the Pareto optimal solutions. This method computes efficient solution by incorporating slack variable in the optimization. The best solution among the Pareto optimal points is chosen close to the Utopian point. The significance of this algorithm in comparison with the conventional weight-based multi-objective control is discussed. The proposed algorithm is implemented on case study of a multi-unit system involving a series of two reactors followed by a separator.","PeriodicalId":231050,"journal":{"name":"2019 Sixth Indian Control Conference (ICC)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sixth Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC47138.2019.9123152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An integrated architecture comprising of a state estimator, dynamic optimizer and model predictive control (MPC) is designed in this work for an output feedback multi-objective control of a process system involving multiple units. The output feedback control uses a multi-rate extended Kalman Filter (EKF) for state estimation. Measurement delays in the arrival of the measurements of the infrequently sampled primary process variable are fused using a computationally efficient sampled-state augmentation approach. Certainty equivalence is assumed, and the state estimates are used by a dynamic multi-objective optimizer (D-MOO) followed by the coordinator MPC to implement feasible inputs to the plant. The trade-off between multiple objectives are handled by the D-MOO using the augmented -constraint method (AUGMECON) to generate the Pareto optimal solutions. This method computes efficient solution by incorporating slack variable in the optimization. The best solution among the Pareto optimal points is chosen close to the Utopian point. The significance of this algorithm in comparison with the conventional weight-based multi-objective control is discussed. The proposed algorithm is implemented on case study of a multi-unit system involving a series of two reactors followed by a separator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多单元系统的集成多目标预测控制
针对多单元过程系统的输出反馈多目标控制问题,设计了由状态估计器、动态优化器和模型预测控制(MPC)组成的集成体系结构。输出反馈控制采用多速率扩展卡尔曼滤波(EKF)进行状态估计。采用一种计算效率高的采样状态增强方法,融合了采样频率不高的主要过程变量的测量延迟。假设确定性等价,动态多目标优化器(D-MOO)和协调器MPC使用状态估计来实现对对象的可行输入。D-MOO使用增广约束方法(AUGMECON)处理多个目标之间的权衡,生成Pareto最优解。该方法通过在优化中引入松弛变量来计算有效解。在帕累托最优点附近选择最优解。讨论了该算法与传统的基于权重的多目标控制相比的意义。该算法以一个多单元系统为例进行了实现,该系统包括一系列两个反应器和一个分离器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interplanetary Mission Design and Guidance Based on Space Manifold Dynamics On Distributed Solution of Ill-Conditioned System of Linear Equations under Communication Delays ICC 2019 Front Matters Embedded Implementation of Deep Learning-based Linear Model Predictive Control Collaborative Maxima-Turn-Switching for Source Seeking in 2-D Environment with Two Sensor-Equipped UAVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1