Solving OPF Problems using Biogeography Based and Grey Wolf Optimization Techniques

Kingsuk Majumdar, Puja Das, P. Roy, Subrata Banerjee
{"title":"Solving OPF Problems using Biogeography Based and Grey Wolf Optimization Techniques","authors":"Kingsuk Majumdar, Puja Das, P. Roy, Subrata Banerjee","doi":"10.4018/IJEOE.2017070103","DOIUrl":null,"url":null,"abstract":"Thispaperpresentsbiogeography-basedoptimization(BBO)andgreywolfOptimization(GWO)for solvingthemulti-constrainedoptimalpowerflow(OPF)problemsinthepowersystem.Inthispaper, theproposedalgorithmshavebeentestedin9-bussystemundervariousconditionsalongwithIEEE 30bustestsystem.Acomparisonofsimulationresultsrevealsoptimizationefficacyoftheproposed schemeoverevolutionaryprogramming(EP),geneticalgorithm(GA),mixed-integerparticleswarm optimization(MIPSO)fortheglobaloptimizationofmulti-constraintOPFproblems.Itisobserved thatGWOisfarbetterincomparisontootherlistedoptimizationtechniquesandcanbeusedfor aforesaidproblemswithhighefficiency. KEyWORdS Biogeography Based Optimization, Grey Wolf Optimization, Migration, Mutation, Optimal Power Flow","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJEOE.2017070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Thispaperpresentsbiogeography-basedoptimization(BBO)andgreywolfOptimization(GWO)for solvingthemulti-constrainedoptimalpowerflow(OPF)problemsinthepowersystem.Inthispaper, theproposedalgorithmshavebeentestedin9-bussystemundervariousconditionsalongwithIEEE 30bustestsystem.Acomparisonofsimulationresultsrevealsoptimizationefficacyoftheproposed schemeoverevolutionaryprogramming(EP),geneticalgorithm(GA),mixed-integerparticleswarm optimization(MIPSO)fortheglobaloptimizationofmulti-constraintOPFproblems.Itisobserved thatGWOisfarbetterincomparisontootherlistedoptimizationtechniquesandcanbeusedfor aforesaidproblemswithhighefficiency. KEyWORdS Biogeography Based Optimization, Grey Wolf Optimization, Migration, Mutation, Optimal Power Flow
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用生物地理学和灰狼优化技术求解OPF问题
Thispaperpresentsbiogeography-basedoptimization(BBO)andgreywolfOptimization(GWO)for solvingthemulti-constrainedoptimalpowerflow(OPF)problemsinthepowersystem。Inthispaper, theproposedalgorithmshavebeentestedin9-bussystemundervariousconditionsalongwithIEEE 30bustestsystem。Acomparisonofsimulationresultsrevealsoptimizationefficacyoftheproposed schemeoverevolutionaryprogramming(EP),geneticalgorithm(GA),mixed-integerparticleswarm optimation_ (MIPSO)fortheglobaloptimizationofmulti-constraintOPFproblems。Itisobserved thatGWOisfarbetterincomparisontootherlistedoptimizationtechniquesandcanbeusedfor aforesaidproblemswithhighefficiency。关键词:基于生物地理学的优化,灰狼优化,迁移,突变,最优潮流
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Site Selection for Solar Photovoltaic Power Plant in North Eastern State of India using Hybrid MCDM Tools Security Constrained Optimal Reactive Power Dispatch Using Hybrid Particle Swarm Optimization and Differential Evolution Visible Light Communication System for Indoor Positioning Using Solar Cell as Receiver A New Central Control Scheme for Future Micro-Grid Systems Considering Variable Speed Drive Systems and Fuzzy Logic Control System Comparative Study of Two Different Converters with its Controller for Grid Connected WECS with PMSG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1