Aritra Dutta , El Houcine Bergou , Yunming Xiao , Marco Canini , Peter Richtárik
{"title":"Direct nonlinear acceleration","authors":"Aritra Dutta , El Houcine Bergou , Yunming Xiao , Marco Canini , Peter Richtárik","doi":"10.1016/j.ejco.2022.100047","DOIUrl":null,"url":null,"abstract":"<div><p>Optimization acceleration techniques such as momentum play a key role in state-of-the-art machine learning algorithms. Recently, generic vector sequence extrapolation techniques, such as regularized nonlinear acceleration (RNA) of Scieur et al. <span>[22]</span>, were proposed and shown to accelerate fixed point iterations. In contrast to RNA which computes extrapolation coefficients by (approximately) setting the gradient of the objective function to zero at the extrapolated point, we propose a more direct approach, which we call <em>direct nonlinear acceleration (DNA)</em>. In DNA, we aim to minimize (an approximation of) the function value at the extrapolated point instead. We adopt a regularized approach with regularizers designed to prevent the model from entering a region in which the functional approximation is less precise. While the computational cost of DNA is comparable to that of RNA, our direct approach significantly outperforms RNA on both synthetic and real-world datasets. While the focus of this paper is on convex problems, we obtain very encouraging results in accelerating the training of neural networks.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"10 ","pages":"Article 100047"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440622000235/pdfft?md5=1af83969ee833bb0a8954f808f6ca4ee&pid=1-s2.0-S2192440622000235-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440622000235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Optimization acceleration techniques such as momentum play a key role in state-of-the-art machine learning algorithms. Recently, generic vector sequence extrapolation techniques, such as regularized nonlinear acceleration (RNA) of Scieur et al. [22], were proposed and shown to accelerate fixed point iterations. In contrast to RNA which computes extrapolation coefficients by (approximately) setting the gradient of the objective function to zero at the extrapolated point, we propose a more direct approach, which we call direct nonlinear acceleration (DNA). In DNA, we aim to minimize (an approximation of) the function value at the extrapolated point instead. We adopt a regularized approach with regularizers designed to prevent the model from entering a region in which the functional approximation is less precise. While the computational cost of DNA is comparable to that of RNA, our direct approach significantly outperforms RNA on both synthetic and real-world datasets. While the focus of this paper is on convex problems, we obtain very encouraging results in accelerating the training of neural networks.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.