Printed Ethiopic Script Recognition by Using LSTM Networks

Direselign Addis, Chuan-Ming Liu, Van-Dai Ta
{"title":"Printed Ethiopic Script Recognition by Using LSTM Networks","authors":"Direselign Addis, Chuan-Ming Liu, Van-Dai Ta","doi":"10.1109/ICSSE.2018.8519972","DOIUrl":null,"url":null,"abstract":"Bidirectional Long Short-Term Memory (LSTM) networks have brought tremendous results on many machine learning tasks including handwritten and machine printed character recognition systems. The Ethiopic script uses a large number of characters in the writing and existence of visually similar character, which results in a challenge for OCR development. In this paper, we present application of bidirectional LSTM neural networks to recognize machine printed Ethiopic scripts. To train and test the model, we collect text files from different source written in Amharic, Ge’ ez and Tigrigna language and generate 96,000 artificial text line images by applying different degradation techniques. Additionally, to test the model with real scanned documents, we use real 12 page scanned images from Tsenat book. Without using any language modeling and any other post-processing, LSTM networks attain an average character error rate of 2.12%, and this indicates the proposed network achieves a promising result.","PeriodicalId":431387,"journal":{"name":"2018 International Conference on System Science and Engineering (ICSSE)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2018.8519972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Bidirectional Long Short-Term Memory (LSTM) networks have brought tremendous results on many machine learning tasks including handwritten and machine printed character recognition systems. The Ethiopic script uses a large number of characters in the writing and existence of visually similar character, which results in a challenge for OCR development. In this paper, we present application of bidirectional LSTM neural networks to recognize machine printed Ethiopic scripts. To train and test the model, we collect text files from different source written in Amharic, Ge’ ez and Tigrigna language and generate 96,000 artificial text line images by applying different degradation techniques. Additionally, to test the model with real scanned documents, we use real 12 page scanned images from Tsenat book. Without using any language modeling and any other post-processing, LSTM networks attain an average character error rate of 2.12%, and this indicates the proposed network achieves a promising result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用LSTM网络识别印刷埃塞俄比亚文字
双向长短期记忆(LSTM)网络在许多机器学习任务中取得了巨大的成果,包括手写和机器打印字符识别系统。埃塞俄比亚文字在书写中使用了大量的字符,并且存在视觉上相似的字符,这给OCR的发展带来了挑战。在本文中,我们提出了双向LSTM神经网络识别机器打印埃塞俄比亚文字的应用。为了训练和测试模型,我们收集了不同来源的阿姆哈拉语、Ge’ez语和Tigrigna语的文本文件,并通过应用不同的退化技术生成了96,000张人工文本线图像。此外,为了使用真实的扫描文档来测试模型,我们使用了来自Tsenat book的真实的12页扫描图像。在不使用任何语言建模和其他后处理的情况下,LSTM网络的平均字符错误率为2.12%,这表明所提出的网络取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Fuzzy Risk Assessment Strategy Based on Big Data for Multinational Financial Markets Evaluation of Indoor Positioning Based on iBeacon and Pi-Beacon A Mechanism for Adjustable-Delay-Buffer Selection to Dynamically Control Clock Skew A Mixed Reality System to Improve Walking Experience Intelligent Mobile Robot Controller Design for Hotel Room Service with Deep Learning Arm-Based Elevator Manipulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1