{"title":"FPGA glitch power analysis and reduction","authors":"W. Shum, J. Anderson","doi":"10.1109/ISLPED.2011.5993599","DOIUrl":null,"url":null,"abstract":"This paper presents a don't-care-based synthesis technique for reducing glitch power in FPGAs. First, an analysis of glitch power and don't-cares in a commercial FPGA is given, showing that glitch power comprises an average of 26.0% of total dynamic power. An algorithm for glitch reduction is then presented, which takes advantage of don't-cares in the circuit by setting their values based on the circuit's simulated glitch behavior. Glitch power is reduced by up to 49.0%, with an average of 13.7%, while total dynamic power is reduced by up to 12.5%, with an average of 4.0%. The algorithm is applied after placement and routing, and has zero area and performance overhead.","PeriodicalId":117694,"journal":{"name":"IEEE/ACM International Symposium on Low Power Electronics and Design","volume":"40 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2011.5993599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
This paper presents a don't-care-based synthesis technique for reducing glitch power in FPGAs. First, an analysis of glitch power and don't-cares in a commercial FPGA is given, showing that glitch power comprises an average of 26.0% of total dynamic power. An algorithm for glitch reduction is then presented, which takes advantage of don't-cares in the circuit by setting their values based on the circuit's simulated glitch behavior. Glitch power is reduced by up to 49.0%, with an average of 13.7%, while total dynamic power is reduced by up to 12.5%, with an average of 4.0%. The algorithm is applied after placement and routing, and has zero area and performance overhead.