From photonic crystals (via homogenization) to metamaterials

P. Halevi, F. Pérez-Rodríguez
{"title":"From photonic crystals (via homogenization) to metamaterials","authors":"P. Halevi, F. Pérez-Rodríguez","doi":"10.1117/12.681021","DOIUrl":null,"url":null,"abstract":"A very general mean-field theory is presented for a photonic crystal (either dielectric or metallo-dielectric) with arbitrary 3D Bravais lattice and arbitrary shape of the inclusions within the unit cell. The material properties are described by using a generalized conductivity at every point in the unit cell. After averaging over many unit cells for small Bloch wave vectors in comparison with the inverse of the lattice constant, we have derived the macroscopic response for the artificially structured material. In the most general case, such a response turns out to be bi-anisotropic, having terms associated with the permittivity, and permeability, and magnetoelectric tensors. We have derived explicit expressions for the four tensors in terms of the geometry and material parameters of the inclusions. Nevertheless, for a photonic crystal with inversion symmetry the magnetoelectric tensors in the bi-anisotropic constitutive relation vanish. In addition, we have verified that for cubic symmetry the system becomes bi-isotropic, being characterized by two frequency-dependent scalars, namely the permittivity and permeability. It is very important that, in general, the permittivity and permeability tensors are diagonal in different reference systems. The principal axes of the permeability tensor (unlike those of the permittivity tensor) depend on the direction of the wave vector. This necessitates the development of a new Crystal Optics for anisotropic photonic metamaterials.","PeriodicalId":406438,"journal":{"name":"SPIE Optics + Photonics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.681021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A very general mean-field theory is presented for a photonic crystal (either dielectric or metallo-dielectric) with arbitrary 3D Bravais lattice and arbitrary shape of the inclusions within the unit cell. The material properties are described by using a generalized conductivity at every point in the unit cell. After averaging over many unit cells for small Bloch wave vectors in comparison with the inverse of the lattice constant, we have derived the macroscopic response for the artificially structured material. In the most general case, such a response turns out to be bi-anisotropic, having terms associated with the permittivity, and permeability, and magnetoelectric tensors. We have derived explicit expressions for the four tensors in terms of the geometry and material parameters of the inclusions. Nevertheless, for a photonic crystal with inversion symmetry the magnetoelectric tensors in the bi-anisotropic constitutive relation vanish. In addition, we have verified that for cubic symmetry the system becomes bi-isotropic, being characterized by two frequency-dependent scalars, namely the permittivity and permeability. It is very important that, in general, the permittivity and permeability tensors are diagonal in different reference systems. The principal axes of the permeability tensor (unlike those of the permittivity tensor) depend on the direction of the wave vector. This necessitates the development of a new Crystal Optics for anisotropic photonic metamaterials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从光子晶体(通过均匀化)到超材料
提出了具有任意三维Bravais晶格和任意胞内内含物形状的光子晶体(介电晶体或金属介电晶体)的一般平均场理论。材料的性质是用单元胞中每一点的广义电导率来描述的。与晶格常数的逆相比较,在对许多小布洛赫波矢量的单位细胞进行平均后,我们推导出了人工结构材料的宏观响应。在最一般的情况下,这样的响应是双各向异性的,具有与介电常数、磁导率和磁电张量相关的项。我们根据夹杂物的几何和材料参数导出了这四个张量的显式表达式。然而,对于具有反转对称性的光子晶体,双各向异性本构关系中的磁电张量消失。此外,我们已经证实,对于三次对称,系统成为双各向同性,由两个频率相关的标量,即介电常数和磁导率表征。一般来说,介电常数张量和磁导率张量在不同的参考系中是对角的,这是非常重要的。渗透率张量的主轴(与介电常数张量的主轴不同)取决于波矢量的方向。这就要求开发一种用于各向异性光子超材料的新型晶体光学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural network for image-to-image control of optical tweezers Atmospheric turbulence simulation using liquid crystal spatial light modulators Atmospheric simulation using a liquid crystal wavefront-controlling device Spectral sensitivity of the circadian system Generating entangled states of two ququarts using linear optical elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1