COINCIDENT PEAK PREDICTION USING A FEED-FORWARD NEURAL NETWORK

Chase P. Dowling, D. Kirschen, Baosen Zhang
{"title":"COINCIDENT PEAK PREDICTION USING A FEED-FORWARD NEURAL NETWORK","authors":"Chase P. Dowling, D. Kirschen, Baosen Zhang","doi":"10.1109/GLOBALSIP.2018.8646654","DOIUrl":null,"url":null,"abstract":"A significant portion of a business’ annual electrical payments can be made up of coincident peak charges: a transmission surcharge for power consumed when the entire system is at peak demand. This charge occurs only a few times annually, but with per-MW prices orders of magnitudes higher than non-peak times. A business is incentivized to reduce its power consumption, but accurately predicting the timing of peak demand charges is nontrivial. In this paper we present a decision framework based on predicting the day-ahead likelihood of peak demand charges. We train a feed-forward neural net-work to estimate the probability of system demand peaks and show it outperforms conventional forecasting methods using historical load. Using ERCOT demand and weather data from 2010-2017, we show the effectiveness of our framework.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBALSIP.2018.8646654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A significant portion of a business’ annual electrical payments can be made up of coincident peak charges: a transmission surcharge for power consumed when the entire system is at peak demand. This charge occurs only a few times annually, but with per-MW prices orders of magnitudes higher than non-peak times. A business is incentivized to reduce its power consumption, but accurately predicting the timing of peak demand charges is nontrivial. In this paper we present a decision framework based on predicting the day-ahead likelihood of peak demand charges. We train a feed-forward neural net-work to estimate the probability of system demand peaks and show it outperforms conventional forecasting methods using historical load. Using ERCOT demand and weather data from 2010-2017, we show the effectiveness of our framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于前馈神经网络的重合峰预测
企业年度电费的很大一部分可以由同步峰值费用组成:当整个系统处于需求峰值时消耗的电力的传输附加费。这种收费每年只发生几次,但每兆瓦的价格比非高峰时期高几个数量级。企业被激励去减少其电力消耗,但是准确预测高峰需求收费的时间是非常重要的。在本文中,我们提出了一个基于预测一天前高峰需求收费可能性的决策框架。我们训练了一个前馈神经网络来估计系统需求峰值的概率,并表明它优于传统的使用历史负荷的预测方法。利用2010-2017年的ERCOT需求和天气数据,我们展示了我们框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1