A simple synthesis and characterization of PbTe nano-particles

Hong-quan Liu, Fei-Xiang Hao, Jie Guo, Yijie Gu, Qing-kun He, H. Cui
{"title":"A simple synthesis and characterization of PbTe nano-particles","authors":"Hong-quan Liu, Fei-Xiang Hao, Jie Guo, Yijie Gu, Qing-kun He, H. Cui","doi":"10.1109/3M-NANO.2012.6473010","DOIUrl":null,"url":null,"abstract":"PbTe nanopowders with different morphology were prepared by a simple chemical synthesis. Similar cubic nanoparticles have been successfully synthesized by using Pb(NO3)2 and Na2TeO3 as the precursors, and NaBH4 as the reductant. The single PbTe phase is confirmed from XRD pattern, and obvious width of XRD peaks occur. The size of powders is distributed from 20nm to 70nm in a typical process according to observation from SEM and TEM images. Based on HRTEM observation, PbTe nanopowders with an amorphous layer show polyhedron feature. In different crystallization stages, there is different morphology due to competition between surface energy and crystal face energy. The globular, polyhedron and cubic particles belongs to different growth stages, respectively. Possible growth mechanisms of PbTe were also discussed.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2012.6473010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

PbTe nanopowders with different morphology were prepared by a simple chemical synthesis. Similar cubic nanoparticles have been successfully synthesized by using Pb(NO3)2 and Na2TeO3 as the precursors, and NaBH4 as the reductant. The single PbTe phase is confirmed from XRD pattern, and obvious width of XRD peaks occur. The size of powders is distributed from 20nm to 70nm in a typical process according to observation from SEM and TEM images. Based on HRTEM observation, PbTe nanopowders with an amorphous layer show polyhedron feature. In different crystallization stages, there is different morphology due to competition between surface energy and crystal face energy. The globular, polyhedron and cubic particles belongs to different growth stages, respectively. Possible growth mechanisms of PbTe were also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PbTe纳米颗粒的简单合成与表征
采用简单的化学合成方法制备了不同形貌的PbTe纳米粉体。以Pb(NO3)2和Na2TeO3为前驱体,NaBH4为还原剂,成功合成了类似的立方纳米颗粒。XRD谱图证实了单PbTe相的存在,并且出现了明显的XRD峰宽。通过SEM和TEM图像观察,典型工艺中粉末的粒径分布在20nm ~ 70nm之间。基于HRTEM观察,具有非晶层的PbTe纳米粉体呈现多面体特征。在不同的结晶阶段,由于表面能和晶面能的竞争,形成了不同的结晶形态。球状颗粒、多面体颗粒和立方颗粒分别属于不同的生长阶段。讨论了PbTe可能的生长机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking control of an electrostatic torsional micromirror beyond the pull-in limit with enhanced performance Numerical investigation of size and chirality effects on mechanical properties of graphene nanoribbons Recognition of living abnormal cells based on an optical microscope Determination of two-dimensional phase shifts in three-beam laser interference patterns The bonding of LiNbO3-silicon via BCB material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1