A Proximal Algorithm for Estimating the Regularized Wavelet-Based Density-Difference

N. Mijatovic, Rana Haber, G. Anagnostopoulos, Anthony O. Smith, A. Peter
{"title":"A Proximal Algorithm for Estimating the Regularized Wavelet-Based Density-Difference","authors":"N. Mijatovic, Rana Haber, G. Anagnostopoulos, Anthony O. Smith, A. Peter","doi":"10.1109/CSCI49370.2019.00127","DOIUrl":null,"url":null,"abstract":"Density-Difference (DD) estimation is an important unsupervised learning procedure that proceeds many regression methods. The present work details a novel method for estimating the Difference of Densities (DoD) between two distributions. This new method directly calculates the DD, in the form of a wavelet expansion, without the need for explicitly reconstructing individual distributions. Furthermore, the method applies a regularization technique that utilizes both l2 and l1 norm penalties to robustly estimate the coefficients of the wavelet expansion. Optimizing the regularized objective is accomplished via a Proximal Gradient Descent (PGD) approach. Thus, we term our method Regularized Wavelet-based Density-Difference (RWDD) with PGD. On extensive simulated datasets, from complex multimodal to skewed distributions, our method demonstrated superior performance in comparison to other contemporary techniques.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"428 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Density-Difference (DD) estimation is an important unsupervised learning procedure that proceeds many regression methods. The present work details a novel method for estimating the Difference of Densities (DoD) between two distributions. This new method directly calculates the DD, in the form of a wavelet expansion, without the need for explicitly reconstructing individual distributions. Furthermore, the method applies a regularization technique that utilizes both l2 and l1 norm penalties to robustly estimate the coefficients of the wavelet expansion. Optimizing the regularized objective is accomplished via a Proximal Gradient Descent (PGD) approach. Thus, we term our method Regularized Wavelet-based Density-Difference (RWDD) with PGD. On extensive simulated datasets, from complex multimodal to skewed distributions, our method demonstrated superior performance in comparison to other contemporary techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种估计正则小波密度差的近端算法
密度差(DD)估计是一个重要的无监督学习过程,许多回归方法都离不开它。本文详细介绍了一种估算两种分布密度差(DoD)的新方法。这种新方法以小波展开的形式直接计算DD,而不需要明确地重建单个分布。此外,该方法采用正则化技术,利用l2和l1范数惩罚来稳健地估计小波展开的系数。通过近端梯度下降(PGD)方法实现正则化目标的优化。因此,我们将我们的方法称为正则化小波密度差(RWDD)与PGD。在广泛的模拟数据集上,从复杂的多模态分布到偏态分布,我们的方法与其他当代技术相比表现出优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Long Short Term Memory Networks Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference Uncovering Los Angeles Tourists' Patterns Using Geospatial Analysis and Supervised Machine Learning with Random Forest Predictors A Framework for Leveraging Business Intelligence to Manage Transactional Data Flows between Private Healthcare Providers and Medical Aid Administrators Feasibility Study of a Consumer Multi-Sensory Wristband to Monitor Sleep Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1