An efficient technique for determining the steady-state membrane potential profile in tissues with multiple cell types

V. Jacquemet, C. Henriquez
{"title":"An efficient technique for determining the steady-state membrane potential profile in tissues with multiple cell types","authors":"V. Jacquemet, C. Henriquez","doi":"10.1109/CIC.2007.4745434","DOIUrl":null,"url":null,"abstract":"Most simulations of cardiac electrophysiology use the steady state as initial condition. Spatial variations in steady-state membrane potential may arise due to ischemia, coupling with fibroblasts, or local changes in intrinsic resting potential. In large scale models, simulating free evolution until the steady-state is reached may be computationally expensive when long time constants or slow concentration drifts are involved in the cell models. This paper describes a dedicated Newton-based root-finding solver to determine the steady state of a tissue in which two or more cell types coexist in the monodomain framework. This approach was applied to a 2D microstructural tissue model in which myocytes were coupled to fibroblasts, leading to an inhomogeneous elevation of the myocyte resting potential.","PeriodicalId":406683,"journal":{"name":"2007 Computers in Cardiology","volume":"70 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Computers in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2007.4745434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Most simulations of cardiac electrophysiology use the steady state as initial condition. Spatial variations in steady-state membrane potential may arise due to ischemia, coupling with fibroblasts, or local changes in intrinsic resting potential. In large scale models, simulating free evolution until the steady-state is reached may be computationally expensive when long time constants or slow concentration drifts are involved in the cell models. This paper describes a dedicated Newton-based root-finding solver to determine the steady state of a tissue in which two or more cell types coexist in the monodomain framework. This approach was applied to a 2D microstructural tissue model in which myocytes were coupled to fibroblasts, leading to an inhomogeneous elevation of the myocyte resting potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种测定多种细胞类型组织中稳态膜电位分布的有效技术
大多数心脏电生理模拟使用稳态作为初始条件。稳态膜电位的空间变化可能是由于缺血、与成纤维细胞耦合或内在静息电位的局部变化引起的。在大尺度模型中,当细胞模型中涉及长时间常数或缓慢浓度漂移时,模拟自由进化直到达到稳态可能会造成计算上的昂贵。本文描述了一个专用的基于牛顿的寻根求解器,用于确定在单域框架中两种或两种以上细胞类型共存的组织的稳态。该方法应用于二维微结构组织模型,其中肌细胞与成纤维细胞偶联,导致肌细胞静息电位不均匀升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and use of a patient data management system in the intensive care unit: A two-year experience Modelling effects of sotalol on T-wave morphology Vulnerability to reentry in a 3D regionally ischemic ventricular slab preparation: A simulation study Evaluation of multi-component Electrocardiogram beat detection algorithms: Implications of three different noise artifacts Dynamic 4D blood flow representation in the aorta and analysis from cine-MRI in patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1