Yaai Chen, Jinghua Zhou, Weiping Zhang, Weihai Li, S. Xie
{"title":"Capacitor charge balance control strategy of Buck converter","authors":"Yaai Chen, Jinghua Zhou, Weiping Zhang, Weihai Li, S. Xie","doi":"10.1109/IPEMC.2009.5157441","DOIUrl":null,"url":null,"abstract":"Taking Buck converter for example, this paper studies the non-linear characteristics and capacitance charge-balance control strategy of switching regulations systems under large-signal disturbance. In order to reduce the transient overshoot and recovery time of the output voltage under large-signal disturbance, the paper adopts capacitive charge-balance principle, deduces a new digital control algorithm and builds the MATLAB simulation model for this control algorithm. The simulation results show that the algorithm can optimize the response of the converter and improve the dynamic performances when the load current changes suddenly. Based on TMS320F28335 digital signal processor (DSP), a prototype is developed and its output power is 60W. Through the prototype, the capacitive charge-balance control strategy is verified under large-signal disturbance. The experimental results show this kind of control strategy is suitable to the large signal condition and provide a new method for controlling and dealing with the system in large-signal condition.","PeriodicalId":375971,"journal":{"name":"2009 IEEE 6th International Power Electronics and Motion Control Conference","volume":"54 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 6th International Power Electronics and Motion Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEMC.2009.5157441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Taking Buck converter for example, this paper studies the non-linear characteristics and capacitance charge-balance control strategy of switching regulations systems under large-signal disturbance. In order to reduce the transient overshoot and recovery time of the output voltage under large-signal disturbance, the paper adopts capacitive charge-balance principle, deduces a new digital control algorithm and builds the MATLAB simulation model for this control algorithm. The simulation results show that the algorithm can optimize the response of the converter and improve the dynamic performances when the load current changes suddenly. Based on TMS320F28335 digital signal processor (DSP), a prototype is developed and its output power is 60W. Through the prototype, the capacitive charge-balance control strategy is verified under large-signal disturbance. The experimental results show this kind of control strategy is suitable to the large signal condition and provide a new method for controlling and dealing with the system in large-signal condition.