Anticipating and eliminating redundant computations in accelerated sparse training

Jonathan Lew, Y. Liu, Wenyi Gong, Negar Goli, R. D. Evans, Tor M. Aamodt
{"title":"Anticipating and eliminating redundant computations in accelerated sparse training","authors":"Jonathan Lew, Y. Liu, Wenyi Gong, Negar Goli, R. D. Evans, Tor M. Aamodt","doi":"10.1145/3470496.3527404","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNNs) are the state of art in image, speech, and text processing. To address long training times and high energy consumption, custom accelerators can exploit sparsity, that is zero-valued weights, activations, and gradients. Proposed sparse Convolution Neural Network (CNN) accelerators support training with no more than one dynamic sparse convolution input. Among existing accelerator classes, the only ones supporting two-sided dynamic sparsity are outer-product-based accelerators. However, when mapping a convolution onto an outer product, multiplications occur that do not correspond to any valid output. These Redundant Cartesian Products (RCPs) decrease energy efficiency and performance. We observe that in sparse training, up to 90% of computations are RCPs resulting from the convolution of large matrices for weight updates during the backward pass of CNN training. In this work, we design a mechanism, ANT, to anticipate and eliminate RCPs, enabling more efficient sparse training when integrated with an outer-product accelerator. By anticipating over 90% of RCPs, ANT achieves a geometric mean of 3.71× speed up over an SCNN-like accelerator [67] on 90% sparse training using DenseNet-121 [38], ResNet18 [35], VGG16 [73], Wide ResNet (WRN) [85], and ResNet-50 [35], with 4.40× decrease in energy consumption and 0.0017mm2 of additional area. We extend ANT to sparse matrix multiplication, so that the same accelerator can anticipate RCPs in sparse fully-connected layers, transformers, and RNNs.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Deep Neural Networks (DNNs) are the state of art in image, speech, and text processing. To address long training times and high energy consumption, custom accelerators can exploit sparsity, that is zero-valued weights, activations, and gradients. Proposed sparse Convolution Neural Network (CNN) accelerators support training with no more than one dynamic sparse convolution input. Among existing accelerator classes, the only ones supporting two-sided dynamic sparsity are outer-product-based accelerators. However, when mapping a convolution onto an outer product, multiplications occur that do not correspond to any valid output. These Redundant Cartesian Products (RCPs) decrease energy efficiency and performance. We observe that in sparse training, up to 90% of computations are RCPs resulting from the convolution of large matrices for weight updates during the backward pass of CNN training. In this work, we design a mechanism, ANT, to anticipate and eliminate RCPs, enabling more efficient sparse training when integrated with an outer-product accelerator. By anticipating over 90% of RCPs, ANT achieves a geometric mean of 3.71× speed up over an SCNN-like accelerator [67] on 90% sparse training using DenseNet-121 [38], ResNet18 [35], VGG16 [73], Wide ResNet (WRN) [85], and ResNet-50 [35], with 4.40× decrease in energy consumption and 0.0017mm2 of additional area. We extend ANT to sparse matrix multiplication, so that the same accelerator can anticipate RCPs in sparse fully-connected layers, transformers, and RNNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加速稀疏训练中冗余计算的预测与消除
深度神经网络(dnn)是图像、语音和文本处理领域的最新技术。为了解决长训练时间和高能量消耗的问题,定制加速器可以利用稀疏性,即零值权重、激活和梯度。本文提出的稀疏卷积神经网络(CNN)加速器支持不超过一个动态稀疏卷积输入的训练。在现有的加速器类中,唯一支持双边动态稀疏性的是基于外部产品的加速器。然而,当将卷积映射到外部乘积时,发生的乘法不对应于任何有效的输出。这些冗余笛卡尔积(rcp)降低了能源效率和性能。我们观察到,在稀疏训练中,高达90%的计算是由CNN训练过程中向后传递权重更新的大矩阵卷积产生的rcp。在这项工作中,我们设计了一种机制,ANT,来预测和消除rcp,当与外部产品加速器集成时,实现更有效的稀疏训练。通过预测超过90%的rcp, ANT在使用DenseNet-121[38]、ResNet18[35]、VGG16[73]、Wide ResNet (WRN)[85]和ResNet-50[35]进行90%稀疏训练时,在类似scnn的加速器[67]上实现了3.71倍的几何平均速度提升,能耗降低4.40倍,额外面积减少0.0017mm2。我们将ANT扩展到稀疏矩阵乘法,因此相同的加速器可以预测稀疏全连接层、变压器和rnn中的rcp。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BioHD: an efficient genome sequence search platform using HyperDimensional memorization MeNDA: a near-memory multi-way merge solution for sparse transposition and dataflows Graphite: optimizing graph neural networks on CPUs through cooperative software-hardware techniques INSPIRE: in-storage private information retrieval via protocol and architecture co-design CraterLake: a hardware accelerator for efficient unbounded computation on encrypted data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1