Representations of directions in EEG-BMI using winner-take-all readouts

Hoon-Hee Kim, Jaeseung Jeong
{"title":"Representations of directions in EEG-BMI using winner-take-all readouts","authors":"Hoon-Hee Kim, Jaeseung Jeong","doi":"10.1109/IWW-BCI.2017.7858178","DOIUrl":null,"url":null,"abstract":"In EEG-BMI systems, how to represent user's intention is a most important question. The motor imagery method has used to represent directions where user want machine to move. However, the motor imagery method is just mapping the parts of bodies to directions such as a left hand means moving left. We study novel methods for representations of directions not using the motor imagery. First, we record the EEG signals when a user thought direction where want to move. Second, we used echo state networks paradigm which is one of Reservoir computing method for analysis and classification of non-linear time series. Third, we designed winner-take-all readouts for representations of user's intended directions. These winner-take-all readouts are perfectly classified directions of user's intention using EEG signals.","PeriodicalId":443427,"journal":{"name":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","volume":"892 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2017.7858178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In EEG-BMI systems, how to represent user's intention is a most important question. The motor imagery method has used to represent directions where user want machine to move. However, the motor imagery method is just mapping the parts of bodies to directions such as a left hand means moving left. We study novel methods for representations of directions not using the motor imagery. First, we record the EEG signals when a user thought direction where want to move. Second, we used echo state networks paradigm which is one of Reservoir computing method for analysis and classification of non-linear time series. Third, we designed winner-take-all readouts for representations of user's intended directions. These winner-take-all readouts are perfectly classified directions of user's intention using EEG signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用赢者通吃的读数来表示EEG-BMI的方向
在EEG-BMI系统中,如何表达用户的意图是一个非常重要的问题。运动意象法用于表示用户希望机器移动的方向。然而,运动想象方法只是将身体的各个部位映射到方向上,比如左手意味着向左移动。我们研究了不使用运动意象的方向表征新方法。首先,我们记录下用户想要移动的方向时的脑电图信号。其次,利用水库计算方法中的回声状态网络范式对非线性时间序列进行分析和分类。第三,我们设计了赢家通吃的读数来表示用户的预期方向。这些赢家通吃的读数是利用脑电图信号对用户意图进行完美分类的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bimanual Arm Movements Decoding using Hybrid Method Single-trial analysis of readiness potentials for lower limb exoskeleton control Towards a whole body brain-machine interface system for decoding expressive movement intent Challenges and Opportunities Design and evaluation of a P300-ERP based BCI system for real-time control of a mobile robot A brain-computer interface speller using peripheral stimulus-based SSVEP and P300
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1