Assessing Fair Machine Learning Strategies Through a Fairness-Utility Trade-off Metric

Luiz Fernando F. P. de Lima, D. R. D. Ricarte, C. Siebra
{"title":"Assessing Fair Machine Learning Strategies Through a Fairness-Utility Trade-off Metric","authors":"Luiz Fernando F. P. de Lima, D. R. D. Ricarte, C. Siebra","doi":"10.5753/eniac.2021.18288","DOIUrl":null,"url":null,"abstract":"Due to the increasing use of artificial intelligence for decision making and the observation of biased decisions in many applications, researchers are investigating solutions that attempt to build fairer models that do not reproduce discrimination. Some of the explored strategies are based on adversarial learning to achieve fairness in machine learning by encoding fairness constraints through an adversarial model. Moreover, it is usual for each proposal to assess its model with a specific metric, making comparing current approaches a complex task. In that sense, we defined a utility and fairness trade-off metric. We assessed 15 fair model implementations and a baseline model using this metric, providing a systemically comparative ruler for other approaches.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the increasing use of artificial intelligence for decision making and the observation of biased decisions in many applications, researchers are investigating solutions that attempt to build fairer models that do not reproduce discrimination. Some of the explored strategies are based on adversarial learning to achieve fairness in machine learning by encoding fairness constraints through an adversarial model. Moreover, it is usual for each proposal to assess its model with a specific metric, making comparing current approaches a complex task. In that sense, we defined a utility and fairness trade-off metric. We assessed 15 fair model implementations and a baseline model using this metric, providing a systemically comparative ruler for other approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过公平-效用权衡度量评估公平机器学习策略
由于越来越多地使用人工智能进行决策,并且在许多应用中观察到有偏见的决策,研究人员正在研究试图建立不会再现歧视的更公平模型的解决方案。探索的一些策略是基于对抗性学习,通过对抗性模型编码公平约束来实现机器学习中的公平性。此外,每个提案通常使用特定的度量来评估其模型,这使得比较当前的方法成为一项复杂的任务。从这个意义上说,我们定义了一个效用和公平权衡指标。我们使用该度量评估了15个公平模型实现和一个基线模型,为其他方法提供了一个系统的比较标尺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of machine learning algorithms trained on biased data An iterated local search for the travelling salesman problem Comparative Analysis of Collaborative Filtering-Based Predictors of Scores in Surveys of a Large Company Uma Abordagem de Agrupamento Automático de Dados Baseada na Otimização por Busca em Grupo Memética Detection of weapon possession and fire in Public Safety surveillance cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1