Comparison of denoising schemes and dimensionality reduction techniques for fault diagnosis of rolling element bearing using wavelet transform

H. Kumar, P. Pai, N. Sriram, G. Vijay, M. Patil
{"title":"Comparison of denoising schemes and dimensionality reduction techniques for fault diagnosis of rolling element bearing using wavelet transform","authors":"H. Kumar, P. Pai, N. Sriram, G. Vijay, M. Patil","doi":"10.1504/IJMR.2016.079461","DOIUrl":null,"url":null,"abstract":"This paper presents the evaluation of five wavelets-based denoising schemes in order to select the best possible scheme for denoising bearing vibration signals and dimensionality reduction techniques using artificial neural network (ANN). Vibration signals from four conditions of rolling element bearing (REB) namely normal (N), defect on inner race (IR), defect on ball (B) and defect on outer race (OR) have been denoised using interval-dependent denoising scheme, which is the best possible scheme. The denoised signal is subjected to discrete wavelet transform (DWT) to extract 17 statistical features. Principal component analysis (PCA)-based dimensionality reduction technique (DRT) namely PCA alone, Kernel-PCA (KPCA) alone, PCA using SVD and KPCA using SVD have been used for reducing the dimension of the features. It is found that KPCA using SVD resulted in highest prediction accuracy using ANN, making it suitable for effective REB fault diagnosis. [Received 30 November 2015; Revised 17 June 2016; Accepted 20 June 2016]","PeriodicalId":154059,"journal":{"name":"Int. J. Manuf. Res.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Manuf. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMR.2016.079461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents the evaluation of five wavelets-based denoising schemes in order to select the best possible scheme for denoising bearing vibration signals and dimensionality reduction techniques using artificial neural network (ANN). Vibration signals from four conditions of rolling element bearing (REB) namely normal (N), defect on inner race (IR), defect on ball (B) and defect on outer race (OR) have been denoised using interval-dependent denoising scheme, which is the best possible scheme. The denoised signal is subjected to discrete wavelet transform (DWT) to extract 17 statistical features. Principal component analysis (PCA)-based dimensionality reduction technique (DRT) namely PCA alone, Kernel-PCA (KPCA) alone, PCA using SVD and KPCA using SVD have been used for reducing the dimension of the features. It is found that KPCA using SVD resulted in highest prediction accuracy using ANN, making it suitable for effective REB fault diagnosis. [Received 30 November 2015; Revised 17 June 2016; Accepted 20 June 2016]
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波变换的滚动轴承故障诊断降噪方案与降维技术的比较
本文对5种基于小波的轴承振动信号去噪方案进行了评价,并利用人工神经网络降维技术对轴承振动信号进行了去噪。对正常(N)、内滚圈缺陷(IR)、球上缺陷(B)和外滚圈缺陷(OR)四种状态下的滚动轴承振动信号进行了区间依赖去噪,得到了最佳的去噪方案。对去噪后的信号进行离散小波变换(DWT),提取17个统计特征。基于主成分分析(PCA)的降维技术(DRT)分别是单独的PCA、单独的核主成分分析(KPCA)、使用奇异值分解的PCA和使用奇异值分解的KPCA。结果表明,基于奇异值分解的KPCA比基于神经网络的KPCA预测精度更高,适用于REB故障的有效诊断。[2015年11月30日收到;2016年6月17日修订;接受2016年6月20日]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer simulation and optimisation of material handling systems FEM assessment of the effects of machining parameters in vibration assisted nano impact machining of silicon by loose abrasives Prediction of three-dimensional coordinate measurement of space points based on BP neural network An integrated approach for multi-period manufacturing planning of job-shops Supplier evaluation and selection based on quality matchable degree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1