Zhixiang Liu, E. Sha, Xianzhang Chen, Weiwen Jiang, Qingfeng Zhuge
{"title":"Performance Optimization for In-Memory File Systems on NUMA Machines","authors":"Zhixiang Liu, E. Sha, Xianzhang Chen, Weiwen Jiang, Qingfeng Zhuge","doi":"10.1109/PDCAT.2016.018","DOIUrl":null,"url":null,"abstract":"The growing demand for high-performance data processing stimulates the development of in-memory file systems, which exploit the advanced features of emerging non-volatile memory techniques for achieving high-speed file accesses. Existing in-memory file systems, however, are all designed for the systems with uniformed memory accesses. Their performance is poor on Non-Uniform Memory Access (NUMA) machines as they do not consider the asymmetric memory access speed and the architecture of multiple nodes. In this paper, we propose a new design of NUMA-aware in-memory file systems. We propose a distributed file system layout for leveraging the loads of in-memory file accesses on different nodes, a thread-file binding algorithm and a buffer assignment technique for increasing local memory accesses during run-time. Based on the proposed techniques, we implement a functional NUMA-aware in-memory file system, HydraFS, in Linux kernel. Extensive experiments are conducted with the standard benchmark. The experimental results show that HydraFS significantly outperforms typical existing in-memory file systems, including EXT4-DAX, PMFS, and SIMFS.","PeriodicalId":203925,"journal":{"name":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2016.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The growing demand for high-performance data processing stimulates the development of in-memory file systems, which exploit the advanced features of emerging non-volatile memory techniques for achieving high-speed file accesses. Existing in-memory file systems, however, are all designed for the systems with uniformed memory accesses. Their performance is poor on Non-Uniform Memory Access (NUMA) machines as they do not consider the asymmetric memory access speed and the architecture of multiple nodes. In this paper, we propose a new design of NUMA-aware in-memory file systems. We propose a distributed file system layout for leveraging the loads of in-memory file accesses on different nodes, a thread-file binding algorithm and a buffer assignment technique for increasing local memory accesses during run-time. Based on the proposed techniques, we implement a functional NUMA-aware in-memory file system, HydraFS, in Linux kernel. Extensive experiments are conducted with the standard benchmark. The experimental results show that HydraFS significantly outperforms typical existing in-memory file systems, including EXT4-DAX, PMFS, and SIMFS.