Joint Heterogeneous Pair-wise Loss For Top-N Recommendation

Jin Yi, Jiajin Huang, Jin Qin, Yuan Luo
{"title":"Joint Heterogeneous Pair-wise Loss For Top-N Recommendation","authors":"Jin Yi, Jiajin Huang, Jin Qin, Yuan Luo","doi":"10.1145/3350546.3352517","DOIUrl":null,"url":null,"abstract":"We propose a novel pairwise unified recommendation model (short for pairwise URM). The pairwise URM combines two pairwise ranking-oriented collaborative filtering approaches, namely Collaborative Less-is-More Filtering (CLiMF) and Bayesian Personal Ranking (BPR). By sharing common latent features of users and items in BPR and CLiMF, the pairwise URM can benefit from the two methods to improve recommendation qualities. The experimental evaluation is conducted on two real-world datasets with different scales and demonstrates the positive effect of the performance of the pairwise URM.","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel pairwise unified recommendation model (short for pairwise URM). The pairwise URM combines two pairwise ranking-oriented collaborative filtering approaches, namely Collaborative Less-is-More Filtering (CLiMF) and Bayesian Personal Ranking (BPR). By sharing common latent features of users and items in BPR and CLiMF, the pairwise URM can benefit from the two methods to improve recommendation qualities. The experimental evaluation is conducted on two real-world datasets with different scales and demonstrates the positive effect of the performance of the pairwise URM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Top-N推荐的联合异构成对损失
提出了一种新的两两统一推荐模型(pairwise URM)。两两URM结合了两种面向两两排序的协同过滤方法,即协同Less-is-More filtering (clif)和Bayesian Personal Ranking (BPR)。通过共享BPR和clif中用户和项目的共同潜在特征,两两URM可以从两种方法中受益,从而提高推荐质量。在两个不同规模的真实数据集上进行了实验评估,验证了两两URM性能的积极效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Issue Recommendation for Open Source Communities Exploring Differences in the Impact of Users’ Traces on Arabic and English Facebook Search Design and implementation of an open source Greek POS Tagger and Entity Recognizer using spaCy Extracting Ego-Centric Social Networks from Linked Open Data Towards an End-User Layer for Data Integrity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1