{"title":"Multistage SFM: Revisiting Incremental Structure from Motion","authors":"R. Shah, A. Deshpande, P J Narayanan","doi":"10.1109/3DV.2014.95","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new multistage approach for SfM reconstruction of a single component. Our method begins with building a coarse 3D reconstruction using high-scale features of given images. This step uses only a fraction of features and is fast. We enrich the model in stages by localizing remaining images to it and matching and triangulating remaining features. Unlike traditional incremental SfM, localization and triangulation steps in our approach are made efficient and embarrassingly parallel using geometry of the coarse model. The coarse model allows us to use 3D-2D correspondences based direct localization techniques to register remaining images. We further utilize the geometry of the coarse model to reduce the pair-wise image matching effort as well as to perform fast guided feature matching for majority of features. Our method produces similar quality models as compared to incremental SfM methods while being notably fast and parallel. Our algorithm can reconstruct a 1000 images dataset in 15 hours using a single core, in about 2 hours using 8 cores and in a few minutes by utilizing full parallelism of about 200 cores.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"13 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
In this paper, we present a new multistage approach for SfM reconstruction of a single component. Our method begins with building a coarse 3D reconstruction using high-scale features of given images. This step uses only a fraction of features and is fast. We enrich the model in stages by localizing remaining images to it and matching and triangulating remaining features. Unlike traditional incremental SfM, localization and triangulation steps in our approach are made efficient and embarrassingly parallel using geometry of the coarse model. The coarse model allows us to use 3D-2D correspondences based direct localization techniques to register remaining images. We further utilize the geometry of the coarse model to reduce the pair-wise image matching effort as well as to perform fast guided feature matching for majority of features. Our method produces similar quality models as compared to incremental SfM methods while being notably fast and parallel. Our algorithm can reconstruct a 1000 images dataset in 15 hours using a single core, in about 2 hours using 8 cores and in a few minutes by utilizing full parallelism of about 200 cores.