Maximum Torque Per Ampere Based Direct Torque Control Scheme of IM Drive for Electrical Vehicle Applications

Pratibha Naganathan, S. Srinivas
{"title":"Maximum Torque Per Ampere Based Direct Torque Control Scheme of IM Drive for Electrical Vehicle Applications","authors":"Pratibha Naganathan, S. Srinivas","doi":"10.1109/EPEPEMC.2018.8521987","DOIUrl":null,"url":null,"abstract":"A novel Maximum Torque Per Ampere (MTPA) based Direct Torque Control (DTC) scheme is proposed in this paper, for a two-level inverter fed Induction Motor (IM) drive, suited for Electric Vehicle (EV) applications. In the EV applications, reference torque is slowly varied, which opens up the option to control the flux reference in order to incorporate MTPA condition, facilitating improvement in IM efficiency. Firstly, flux reference changes needed to realize MTPA condition are derived in synchronous reference frame and then appropriately translated to the stationary reference frame so as to be adopted for DTC for controlling both torque and flux in the IM. With this relation, an MTPA controller is designed along with a feedback-linearizing controller. The performance of the IM with the proposed MTPA based DTC is tested initially for smooth varying torque reference and results are presented that clearly demonstrates a much lower current drawn from the inverter drive when compared with the use of conventional DTC scheme. This may lead to improved energy savings. To ascertain the benefits obtainable with the envisaged MTPA based DTC scheme for EV applications, the motor drive is tested and experimental results are presented with the European Union (EU) urban drive cycle data.","PeriodicalId":251046,"journal":{"name":"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPEMC.2018.8521987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A novel Maximum Torque Per Ampere (MTPA) based Direct Torque Control (DTC) scheme is proposed in this paper, for a two-level inverter fed Induction Motor (IM) drive, suited for Electric Vehicle (EV) applications. In the EV applications, reference torque is slowly varied, which opens up the option to control the flux reference in order to incorporate MTPA condition, facilitating improvement in IM efficiency. Firstly, flux reference changes needed to realize MTPA condition are derived in synchronous reference frame and then appropriately translated to the stationary reference frame so as to be adopted for DTC for controlling both torque and flux in the IM. With this relation, an MTPA controller is designed along with a feedback-linearizing controller. The performance of the IM with the proposed MTPA based DTC is tested initially for smooth varying torque reference and results are presented that clearly demonstrates a much lower current drawn from the inverter drive when compared with the use of conventional DTC scheme. This may lead to improved energy savings. To ascertain the benefits obtainable with the envisaged MTPA based DTC scheme for EV applications, the motor drive is tested and experimental results are presented with the European Union (EU) urban drive cycle data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于每安培最大转矩的电动汽车IM驱动直接转矩控制方案
提出了一种新的基于最大转矩/安培(MTPA)的直接转矩控制(DTC)方案,适用于电动汽车(EV)应用的双电平变频感应电动机(IM)驱动。在电动汽车应用中,参考转矩变化缓慢,这为控制参考磁链以纳入MTPA条件提供了选择,从而促进了IM效率的提高。首先,在同步参考系中推导出实现MTPA条件所需的磁链参考变化,然后适当地转换到静止参考系中,用于DTC控制IM中的转矩和磁链。利用这一关系,设计了MTPA控制器和反馈线性化控制器。首先对基于MTPA的直接转矩控制的IM性能进行了平滑变矩参考测试,结果清楚地表明,与使用传统的直接转矩控制方案相比,逆变器驱动产生的电流要低得多。这可能会提高节能效果。为了确定设想的基于MTPA的电动汽车直接转矩控制方案的效益,对电机驱动进行了测试,并以欧盟(EU)城市驾驶循环数据提供了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Active Hybrid Filter Applied with a Multi-Cell Switch-Mode Power Amplifier Nonlinear MIMO Control of Interleaved Three-Port Boost Converter by Means of State-Feedback Linearization Voltage Stability Improvement by Using a Newly Designed STATCOM Controller in Case of High Wind Penetration Cases Soft-Switching Converter Based on Primary Series Connection and Single Transformer Design and Analysis of a Two-Phase Interleaved Boost Converter Based Microinverter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1