Non-Fungible Token Bubble Prediction using Extended Log-Periodic Power Law Model

Ikkou Okubo, Kensuke Ito, Kyohei Shibano, G. Mogi
{"title":"Non-Fungible Token Bubble Prediction using Extended Log-Periodic Power Law Model","authors":"Ikkou Okubo, Kensuke Ito, Kyohei Shibano, G. Mogi","doi":"10.5121/csit.2023.130521","DOIUrl":null,"url":null,"abstract":"Non-fungible token (NFT) bubbles are a problematic issue, and this study aims to predict NFT bubbles using an extended log-periodic power law singularity (LPPLS) model. The classic LPPLS model targets the endogenous nature of bubbles caused by the mimetic behavior of investors without external influences; however, the extended model attempts to incorporate exogenous influences. First, we compare the performance of the two models for NFT price prediction. The exogeneous variable in the extended model is cryptocurrency volatility. Then, we calculate the bubble confidence using both models. The results show that the explanatory power and forecasting accuracy of the extended model are superior in all projects. We also find that the bubble confidence indicator reinforces the results of bubble prediction.","PeriodicalId":261978,"journal":{"name":"Computer Science, Engineering and Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science, Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2023.130521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-fungible token (NFT) bubbles are a problematic issue, and this study aims to predict NFT bubbles using an extended log-periodic power law singularity (LPPLS) model. The classic LPPLS model targets the endogenous nature of bubbles caused by the mimetic behavior of investors without external influences; however, the extended model attempts to incorporate exogenous influences. First, we compare the performance of the two models for NFT price prediction. The exogeneous variable in the extended model is cryptocurrency volatility. Then, we calculate the bubble confidence using both models. The results show that the explanatory power and forecasting accuracy of the extended model are superior in all projects. We also find that the bubble confidence indicator reinforces the results of bubble prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展对数周期幂律模型的不可替代代币泡沫预测
不可替代代币(NFT)泡沫是一个有问题的问题,本研究旨在使用扩展的对数周期幂律奇点(LPPLS)模型来预测NFT泡沫。经典的LPPLS模型针对的是投资者模仿行为在没有外部影响的情况下产生的泡沫的内生性质;然而,扩展模型试图纳入外生影响。首先,我们比较了两种模型在NFT价格预测中的表现。扩展模型中的外生变量是加密货币的波动性。然后,我们计算了两种模型的泡沫置信度。结果表明,推广模型在各项目中的解释力和预测精度均较好。我们还发现泡沫信心指标强化了泡沫预测的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Natural Language Processed Web Application that Interpret and Convert English to Python Code A Perceptive Program to Assist Remote Learning for Students with Learning Disabilities using Screen and Bluetooth Output Tracking Emotional Music Generation: An Analysis of Effectiveness and user Satisfaction by using Python and Dart Fun Writer: A Context-Based Intelligent Writing Platform to Assist and Motivate Writing Activities using Artificial Intelligence and Natural Language Processing Use of AI to Diversify and Improve the Performance of RF Sensors Drone Detection Mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1