Kyomin Sohn, Sungdae Choi, Jeong-Ho Woo, Joo-Young Kim, H. Yoo
{"title":"A 0.6-V, 6.8-μW Embedded SRAM for Ultra-low Power SoC","authors":"Kyomin Sohn, Sungdae Choi, Jeong-Ho Woo, Joo-Young Kim, H. Yoo","doi":"10.1109/ASSCC.2006.357914","DOIUrl":null,"url":null,"abstract":"A novel embedded SRAM is proposed with features of high reliability and low power consumption. The critical control signals are made in correspondence to clock-duty cycle for high reliability. A hybrid precharge scheme is adopted for low power consumption. Additionally, an asymmetric read-write scheme is useful in a slow-but-steady write situation such as a control SoC for BSN (body sensor network). The fabricated 128-kb embedded SRAM consumes 117-μW at the worst case and 6.8-μW at normal write operation in a 0.6-V supply voltage.","PeriodicalId":142478,"journal":{"name":"2006 IEEE Asian Solid-State Circuits Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2006.357914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A novel embedded SRAM is proposed with features of high reliability and low power consumption. The critical control signals are made in correspondence to clock-duty cycle for high reliability. A hybrid precharge scheme is adopted for low power consumption. Additionally, an asymmetric read-write scheme is useful in a slow-but-steady write situation such as a control SoC for BSN (body sensor network). The fabricated 128-kb embedded SRAM consumes 117-μW at the worst case and 6.8-μW at normal write operation in a 0.6-V supply voltage.