A Universal Approach to Detect and Classify Road Surface Markings

Fabian Poggenhans, M. Schreiber, C. Stiller
{"title":"A Universal Approach to Detect and Classify Road Surface Markings","authors":"Fabian Poggenhans, M. Schreiber, C. Stiller","doi":"10.1109/ITSC.2015.310","DOIUrl":null,"url":null,"abstract":"In autonomous driving, road markings are an essential element for high-precision mapping, trajectory planning and can provide important information for localization. This paper presents an approach to detect, classify and approximate a great variety of road markings using a stereoscopic camera system. We present an algorithm that is able to classify characters and arrows as well as stop-lines, pedestrian crossings, dashed and straight lines, etc. The classification is independent of orientation, position or the exact shape. This is achieved using a histogram of the marking width as main part of the feature vector for line-shaped markings and Optical Character Recognition (OCR) for characters. Classification is done by an Artificial Neural Network (ANN). We have evaluated our approach over a 10.5 km drive through an urban area.","PeriodicalId":124818,"journal":{"name":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2015.310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In autonomous driving, road markings are an essential element for high-precision mapping, trajectory planning and can provide important information for localization. This paper presents an approach to detect, classify and approximate a great variety of road markings using a stereoscopic camera system. We present an algorithm that is able to classify characters and arrows as well as stop-lines, pedestrian crossings, dashed and straight lines, etc. The classification is independent of orientation, position or the exact shape. This is achieved using a histogram of the marking width as main part of the feature vector for line-shaped markings and Optical Character Recognition (OCR) for characters. Classification is done by an Artificial Neural Network (ANN). We have evaluated our approach over a 10.5 km drive through an urban area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种检测和分类路面标记的通用方法
在自动驾驶中,道路标线是高精度测绘、轨迹规划的基本要素,可以为定位提供重要信息。本文提出了一种利用立体摄像系统检测、分类和近似各种道路标记的方法。我们提出了一种能够对字符和箭头以及停车线、人行横道、虚线和直线等进行分类的算法。这种分类与方向、位置或确切形状无关。这是使用标记宽度的直方图作为线形标记和字符光学字符识别(OCR)特征向量的主要部分来实现的。分类是由人工神经网络(ANN)完成的。我们在市区10.5公里的行驶中对我们的方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Area Traffic Prediction Using High Definition Maps and LiDAR for Safe Driving Assist ZEM 2 All Project (Zero Emission Mobility to All) Economic Analysis Based on the Interrelationships of the OLEV System Components Intelligent Driver Monitoring Based on Physiological Sensor Signals: Application Using Camera On Identifying Dynamic Intersections in Large Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1