Design and implementation of a hybrid remote display protocol to optimize multimedia experience on thin client devices

P. Simoens, P. Praet, B. Vankeirsbilck, J. De Wachter, L. Deboosere, F. De Turck, B. Dhoedt, P. Demeester
{"title":"Design and implementation of a hybrid remote display protocol to optimize multimedia experience on thin client devices","authors":"P. Simoens, P. Praet, B. Vankeirsbilck, J. De Wachter, L. Deboosere, F. De Turck, B. Dhoedt, P. Demeester","doi":"10.1109/ATNAC.2008.4783356","DOIUrl":null,"url":null,"abstract":"In a thin client computing architecture, application processing is delegated to a remote server rather than running the application locally. User input is forwarded to the server, and the rendered images are relayed through a dedicated remote display protocol to the user's device. Existing remote display protocols have been successfully optimized for applications with only minor and low-frequent screen updates, such as a spreadsheet or a text editor. However, they are not designed to cope with the fine-grained and complex color patterns of multimedia applications, leading to high bandwidth requirements and an irresponsive user interface. In this article, a hybrid remote display protocol approach is presented. The existing Remote FrameBuffer protocol of Virtual Network Computing (VNC-RFB) protocol is leveraged with a video streaming mode to transport the rendered images of multimedia applications to the client. Dependent on the amount of motion in the images to be presented, the images are relayed to the client either through the VNC-RFB protocol or through video streaming in the H.264 format. The architecture of this hybrid image renderer is presented and the implementation is detailed. Furthermore, the decision heuristic to switch between the VNC-RFB and the streaming mode is discussed. Experimental results clearly show the advantage of the hybrid approach in terms of client CPU and bandwidth requirements.","PeriodicalId":143803,"journal":{"name":"2008 Australasian Telecommunication Networks and Applications Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Australasian Telecommunication Networks and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATNAC.2008.4783356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

In a thin client computing architecture, application processing is delegated to a remote server rather than running the application locally. User input is forwarded to the server, and the rendered images are relayed through a dedicated remote display protocol to the user's device. Existing remote display protocols have been successfully optimized for applications with only minor and low-frequent screen updates, such as a spreadsheet or a text editor. However, they are not designed to cope with the fine-grained and complex color patterns of multimedia applications, leading to high bandwidth requirements and an irresponsive user interface. In this article, a hybrid remote display protocol approach is presented. The existing Remote FrameBuffer protocol of Virtual Network Computing (VNC-RFB) protocol is leveraged with a video streaming mode to transport the rendered images of multimedia applications to the client. Dependent on the amount of motion in the images to be presented, the images are relayed to the client either through the VNC-RFB protocol or through video streaming in the H.264 format. The architecture of this hybrid image renderer is presented and the implementation is detailed. Furthermore, the decision heuristic to switch between the VNC-RFB and the streaming mode is discussed. Experimental results clearly show the advantage of the hybrid approach in terms of client CPU and bandwidth requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计和实现一种混合远程显示协议,以优化瘦客户机设备上的多媒体体验
在瘦客户机计算体系结构中,将应用程序处理委托给远程服务器,而不是在本地运行应用程序。用户输入被转发到服务器,呈现的图像通过专用的远程显示协议转发到用户的设备。现有的远程显示协议已经成功地针对只有少量和低频率屏幕更新的应用程序(如电子表格或文本编辑器)进行了优化。然而,它们不是为处理多媒体应用程序的细粒度和复杂的颜色模式而设计的,从而导致高带宽需求和无响应的用户界面。本文提出了一种混合远程显示协议方法。利用现有的虚拟网络计算(VNC-RFB)协议的远程帧缓冲协议,采用视频流模式将多媒体应用程序的渲染图像传输到客户端。根据要呈现的图像中的运动量,图像通过VNC-RFB协议或通过H.264格式的视频流传输到客户端。介绍了该混合图像渲染器的体系结构,并给出了具体实现方法。此外,还讨论了在VNC-RFB和流模式之间切换的决策启发式算法。实验结果清楚地显示了混合方法在客户端CPU和带宽需求方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bluetooth Information Exchange Network Identification of Malicious Web Pages with Static Heuristics Self-restraint Admission Control for adhoc WLANs Voice Activity Detection Using Entropy in Spectrum Domain Performance Improvement of Cooperative Relaying Scheme Based on OFCDM in UWB Channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1