Automatic generation of a neural network architecture using evolutionary computation

E. Vonk, L. Jain, L. Veelenturf, R. P. Johnson
{"title":"Automatic generation of a neural network architecture using evolutionary computation","authors":"E. Vonk, L. Jain, L. Veelenturf, R. P. Johnson","doi":"10.1109/ETD.1995.403479","DOIUrl":null,"url":null,"abstract":"This paper reports the application of evolutionary computation in the automatic generation of a neural network architecture. It is a usual practice to use trial and error to find a suitable neural network architecture. This is not only time consuming but may not generate an optimal solution for a given problem. The use of evolutionary computation is a step towards automation in architecture generation. In this paper a brief introduction to the field is given as well as an implementation of automatic neural network generation using genetic programming.<<ETX>>","PeriodicalId":302763,"journal":{"name":"Proceedings Electronic Technology Directions to the Year 2000","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Electronic Technology Directions to the Year 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETD.1995.403479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

Abstract

This paper reports the application of evolutionary computation in the automatic generation of a neural network architecture. It is a usual practice to use trial and error to find a suitable neural network architecture. This is not only time consuming but may not generate an optimal solution for a given problem. The use of evolutionary computation is a step towards automation in architecture generation. In this paper a brief introduction to the field is given as well as an implementation of automatic neural network generation using genetic programming.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于进化计算的神经网络结构的自动生成
本文报道了进化计算在神经网络结构自动生成中的应用。通常的做法是使用试错法来找到合适的神经网络架构。这不仅耗时,而且可能无法为给定问题生成最佳解决方案。进化计算的使用是迈向架构生成自动化的一步。本文简要介绍了这一领域,并给出了一种利用遗传规划实现神经网络自动生成的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-linear adaptive techniques for DOA estimation-a comparative analysis Multiplicative noise cancellation (MNC) in analog VLSI vision sensors Optically powered isolated sensors General fuzzy clustering model and neural networks Evaluation of classification performance for randomly dithered carrier centre frequency in SAR systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1