Exploiting Transmission Lines on Heterogeneous Networks-on-Chip to Improve the Adaptivity and Efficiency of Cache Coherence

Qi Hu, Peng Liu, Michael C. Huang, Xiang-hui Xie
{"title":"Exploiting Transmission Lines on Heterogeneous Networks-on-Chip to Improve the Adaptivity and Efficiency of Cache Coherence","authors":"Qi Hu, Peng Liu, Michael C. Huang, Xiang-hui Xie","doi":"10.1145/2786572.2786576","DOIUrl":null,"url":null,"abstract":"Emerging heterogeneous interconnects have shown lower latency and higher throughput, which can improve the efficiency of communication and create new opportunities for memory system designs. In this paper, transmission lines are employed as a latency-optimized network and combined with a packet-switched network to create heterogeneous interconnects improving the efficiencies of on-chip communication and cache coherence. We take advantage of this heterogeneous interconnect design, and keep cache coherence adaptively based on data locality. Different type of messages are adaptively directed through selected medium of the heterogeneous interconnects to enhance cache coherence effectiveness. Compared with a state-of-the-art coherence mechanism, the proposed technique can reduce the coherence overhead by 24%, reduce the network energy consumption by 35%, and improve the system performance by 25% on a 64-core system.","PeriodicalId":228605,"journal":{"name":"Proceedings of the 9th International Symposium on Networks-on-Chip","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Networks-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786572.2786576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Emerging heterogeneous interconnects have shown lower latency and higher throughput, which can improve the efficiency of communication and create new opportunities for memory system designs. In this paper, transmission lines are employed as a latency-optimized network and combined with a packet-switched network to create heterogeneous interconnects improving the efficiencies of on-chip communication and cache coherence. We take advantage of this heterogeneous interconnect design, and keep cache coherence adaptively based on data locality. Different type of messages are adaptively directed through selected medium of the heterogeneous interconnects to enhance cache coherence effectiveness. Compared with a state-of-the-art coherence mechanism, the proposed technique can reduce the coherence overhead by 24%, reduce the network energy consumption by 35%, and improve the system performance by 25% on a 64-core system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用片上异构网络的传输线提高缓存一致性的自适应和效率
新兴的异构互连具有较低的延迟和较高的吞吐量,可以提高通信效率,为存储系统设计创造新的机会。在本文中,传输线被用作延迟优化网络,并与分组交换网络相结合,以创建异构互连,提高片上通信效率和缓存一致性。我们利用这种异构互连设计,并根据数据局部性自适应保持缓存一致性。不同类型的消息通过选择的异构互连介质自适应定向,以提高缓存一致性的有效性。在64核系统上,与现有的相干机制相比,该技术可将相干开销降低24%,网络能耗降低35%,系统性能提高25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wear-Aware Adaptive Routing for Networks-on-Chips On-Chip Millimeter Wave Antennas and Transceivers On-Chip Decentralized Routers with Balanced Pipelines for Avoiding Interconnect Bottleneck Highly Fault-tolerant NoC Routing with Application-aware Congestion Management A Low-Overhead, Fully-Distributed, Guaranteed-Delivery Routing Algorithm for Faulty Network-on-Chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1