Modeling Gap Seeking Behaviors for Agent-based Crowd Simulation

Linbo Luo, Cheng Chai, Suiping Zhou, Jianfeng Ma
{"title":"Modeling Gap Seeking Behaviors for Agent-based Crowd Simulation","authors":"Linbo Luo, Cheng Chai, Suiping Zhou, Jianfeng Ma","doi":"10.1145/2915926.2915944","DOIUrl":null,"url":null,"abstract":"Research on agent-based crowd simulation has gained tremendous momentum in recent years due to the increase of computing power. One key issue in this research area is to develop various behavioral models to capture the microscopic behaviors of individuals (i.e., agents) in a crowd. In this paper, we propose a novel behavior model for modeling the gap seeking behavior which can be frequently observed in real world scenarios where an individual in a crowd proactively seek for gaps in the crowd flow so as to minimize potential collision with other people. We propose a two-level modeling framework and introduce a gap seeking behavior model as a proactive conflict minimization maneuver at global navigation level. The model is integrated with the reactive collision avoidance model at local steering level. We evaluate our model by simulating a real world scenario. The results show that our model can generate more realistic crowd behaviors compared to the classical social-force model in the given scenario.","PeriodicalId":409915,"journal":{"name":"Proceedings of the 29th International Conference on Computer Animation and Social Agents","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Computer Animation and Social Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2915926.2915944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Research on agent-based crowd simulation has gained tremendous momentum in recent years due to the increase of computing power. One key issue in this research area is to develop various behavioral models to capture the microscopic behaviors of individuals (i.e., agents) in a crowd. In this paper, we propose a novel behavior model for modeling the gap seeking behavior which can be frequently observed in real world scenarios where an individual in a crowd proactively seek for gaps in the crowd flow so as to minimize potential collision with other people. We propose a two-level modeling framework and introduce a gap seeking behavior model as a proactive conflict minimization maneuver at global navigation level. The model is integrated with the reactive collision avoidance model at local steering level. We evaluate our model by simulating a real world scenario. The results show that our model can generate more realistic crowd behaviors compared to the classical social-force model in the given scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于智能体的人群仿真Gap寻找行为建模
近年来,由于计算能力的提高,基于智能体的人群仿真研究获得了巨大的发展势头。该研究领域的一个关键问题是开发各种行为模型来捕捉群体中个体(即代理)的微观行为。在本文中,我们提出了一个新的行为模型来模拟在现实世界场景中经常观察到的人群中的个体主动寻找人群流中的空隙以减少与其他人的潜在碰撞的行为。我们提出了一个两级建模框架,并引入了一个缺口寻找行为模型作为全局导航级的主动冲突最小化机动。该模型与局部转向水平的被动避碰模型相结合。我们通过模拟真实世界的场景来评估我们的模型。结果表明,在给定场景下,与经典社会力模型相比,我们的模型可以生成更真实的人群行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bio-Inspired Virtual Populations: Adaptive Behavior with Affective Feedback Simulation of Small Social Group Behaviors in Emergency Evacuation Exploring Spatial and Temporal Coherence to Strengthen Seam Carving in Video Retargeting Joint-Triplet Motion Image and Local Binary Pattern for 3D Action Recognition Using Kinect Life-sized Group and Crowd simulation in Mobile AR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1