Optimization driven data mining and credit scoring

R. Grossman, H. Poor
{"title":"Optimization driven data mining and credit scoring","authors":"R. Grossman, H. Poor","doi":"10.1109/CIFER.1996.501831","DOIUrl":null,"url":null,"abstract":"An optimization tree approach to the mining of very extensive and complex databases for performance optimizing opportunities is described. This methodology is based on a combination of three innovations: a data management system designed explicitly for data intensive computing; a distributed algorithm for growing classification and regression trees (CART); and a tree based stochastic programming paradigm for the selection of control attributes to optimize a specified objective function. This methodology provides a general technique for optimization in financial applications that is scalable as the number of objects in the database and as the number of attributes per object grow. This scalability allows for a complete data driven analysis of large scale data sets, without the need to restrict attention to sparsely sampled data sets that limits previous methods.","PeriodicalId":378565,"journal":{"name":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFER.1996.501831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

An optimization tree approach to the mining of very extensive and complex databases for performance optimizing opportunities is described. This methodology is based on a combination of three innovations: a data management system designed explicitly for data intensive computing; a distributed algorithm for growing classification and regression trees (CART); and a tree based stochastic programming paradigm for the selection of control attributes to optimize a specified objective function. This methodology provides a general technique for optimization in financial applications that is scalable as the number of objects in the database and as the number of attributes per object grow. This scalability allows for a complete data driven analysis of large scale data sets, without the need to restrict attention to sparsely sampled data sets that limits previous methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化驱动的数据挖掘和信用评分
描述了一种用于挖掘非常广泛和复杂的数据库以获得性能优化机会的优化树方法。这种方法是基于三个创新的组合:一个明确为数据密集型计算设计的数据管理系统;分布式分类与回归树生长算法(CART);并提出了一种基于树的随机规划范式,用于选择控制属性以优化指定的目标函数。该方法为金融应用程序中的优化提供了一种通用技术,该技术可随着数据库中对象的数量和每个对象的属性数量的增长而扩展。这种可扩展性允许对大规模数据集进行完整的数据驱动分析,而不需要限制对稀疏采样数据集的关注,这限制了以前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimisation of an investment in South East Asian country funds investment company Self-organizing fuzzy and MLP approaches to detecting fraudulent financial reporting Density-based clustering and radial basis function modeling to generate credit card fraud scores The gene expression messy genetic algorithm for financial applications Problems with Monte Carlo simulation in the pricing of contingent claims
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1