On the usage of FDLs in optical parallel transmission to support high speed Ethernet

Xiaomin Chen, A. Jukan, A. Gumaste
{"title":"On the usage of FDLs in optical parallel transmission to support high speed Ethernet","authors":"Xiaomin Chen, A. Jukan, A. Gumaste","doi":"10.1109/ONDM.2012.6210265","DOIUrl":null,"url":null,"abstract":"Parallel transmission in the optical layer can enable a scalable network migration from low speed interfaces to high speed serial interfaces, such as 100Gbps Ethernet, as they become available. It is based on the principle of inverse-multiplexing which distributes high speed data stream into multiple low rate optical paths. The main challenge in parallel transmission is the differential delay experienced by different paths. Thus so far, electronic buffering has been widely used to compensate for differential delay. However, at very high speed line rates, such as 40Gbps or even 100Gbps, electronic buffering maybe a challenge. In this paper, we study the usage of Fiber Delay Lines (FDLs) for compensation of differential delay in optical parallel transmission in support of high speed Ethernet services. To this end, we formulate the problem of optimal usage of FDLs in optical networks an Integer Linear Programming (ILP) problem. The results are encouraging as they show that discrete nature of delay provided by FDL buffers is not as limiting as expected, and that FDLs carry potential to enable optical parallel transmission without the need to provide large electronic buffers.","PeriodicalId":151401,"journal":{"name":"2012 16th International Conference on Optical Network Design and Modelling (ONDM)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Conference on Optical Network Design and Modelling (ONDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ONDM.2012.6210265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parallel transmission in the optical layer can enable a scalable network migration from low speed interfaces to high speed serial interfaces, such as 100Gbps Ethernet, as they become available. It is based on the principle of inverse-multiplexing which distributes high speed data stream into multiple low rate optical paths. The main challenge in parallel transmission is the differential delay experienced by different paths. Thus so far, electronic buffering has been widely used to compensate for differential delay. However, at very high speed line rates, such as 40Gbps or even 100Gbps, electronic buffering maybe a challenge. In this paper, we study the usage of Fiber Delay Lines (FDLs) for compensation of differential delay in optical parallel transmission in support of high speed Ethernet services. To this end, we formulate the problem of optimal usage of FDLs in optical networks an Integer Linear Programming (ILP) problem. The results are encouraging as they show that discrete nature of delay provided by FDL buffers is not as limiting as expected, and that FDLs carry potential to enable optical parallel transmission without the need to provide large electronic buffers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
fdl在支持高速以太网的光并行传输中的应用
光层中的并行传输可以实现从低速接口到高速串行接口(如100Gbps以太网)的可扩展网络迁移。它基于反向复用原理,将高速数据流分配到多个低速率光路中。并行传输的主要挑战是不同路径所经历的差分延迟。到目前为止,电子缓冲已被广泛用于补偿差分延迟。然而,在非常高速的线路速率下,比如40Gbps甚至100Gbps,电子缓冲可能是一个挑战。本文研究了光纤延迟线(fdl)在支持高速以太网业务的光并行传输中的差分延迟补偿。为此,我们将光网络中fdl的最优使用问题化为整数线性规划(ILP)问题。结果令人鼓舞,因为它们表明,由FDL缓冲器提供的离散延迟性质并不像预期的那样有限,并且FDL具有实现光学并行传输的潜力,而无需提供大型电子缓冲器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical model for anycast service provisioning in data center interconnections Routing in dynamic future flexi-grid optical networks Fair scheduling of dynamically provisioned WDM connections with differentiated signal quality Software/hardware defined network (SHINE): A novel adaptive optical network framework for future internet The role of network topology on the energy efficiency of IP-over-WDM architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1