A Revised Converter Paradigm Designed for Spam Message Exposure

K. S, T. Vyshnavi, Yaragandla Mounika, S. Tejaswini
{"title":"A Revised Converter Paradigm Designed for Spam Message Exposure","authors":"K. S, T. Vyshnavi, Yaragandla Mounika, S. Tejaswini","doi":"10.1109/ICTACS56270.2022.9988465","DOIUrl":null,"url":null,"abstract":"Within this paper, we point to consider the plausibility of recognizing spams in mobile phone sms messages by recommending an improved Converter method. This method is planned for recognizing spams in SMS messages. We use “Spam Collection v.1 dataset” as well as “UtkMl's Twitter Spam Location Competition” dataset to evaluate our proposed spam Detector, with a number of well-known machine learning classifiers and cutting-edge SMS spam detection techniques serving as the benchmarks. In our paper, we use networks such by way of long short term memory (LSTM), bi-directional LSTM, and encoder-decoder LSTM models which are recurrent neural networks. Our investigations on SMS spam detection demonstrate that the proposed improved spam Converter outperforms all other alternatives regarding accuracy, F1-Score and recall. Additionally, the suggested model performs well on UtkMl's Twitter dataset, suggesting a favorable chance of applying model to other similar issues.","PeriodicalId":385163,"journal":{"name":"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTACS56270.2022.9988465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Within this paper, we point to consider the plausibility of recognizing spams in mobile phone sms messages by recommending an improved Converter method. This method is planned for recognizing spams in SMS messages. We use “Spam Collection v.1 dataset” as well as “UtkMl's Twitter Spam Location Competition” dataset to evaluate our proposed spam Detector, with a number of well-known machine learning classifiers and cutting-edge SMS spam detection techniques serving as the benchmarks. In our paper, we use networks such by way of long short term memory (LSTM), bi-directional LSTM, and encoder-decoder LSTM models which are recurrent neural networks. Our investigations on SMS spam detection demonstrate that the proposed improved spam Converter outperforms all other alternatives regarding accuracy, F1-Score and recall. Additionally, the suggested model performs well on UtkMl's Twitter dataset, suggesting a favorable chance of applying model to other similar issues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对垃圾邮件暴露设计的改版转换器范例
在本文中,我们指出,通过推荐一种改进的转换器方法来考虑在手机短信中识别垃圾邮件的合理性。该方法用于识别SMS消息中的垃圾邮件。我们使用“垃圾邮件收集v.1数据集”以及“UtkMl的Twitter垃圾邮件定位竞赛”数据集来评估我们提出的垃圾邮件检测器,并使用许多知名的机器学习分类器和尖端的SMS垃圾邮件检测技术作为基准。在我们的论文中,我们使用了长短期记忆(LSTM)、双向LSTM和编码器-解码器LSTM模型等网络,这些模型都是循环神经网络。我们对短信垃圾邮件检测的研究表明,所提出的改进的垃圾邮件转换器在准确性、F1-Score和召回率方面优于所有其他替代方案。此外,建议的模型在UtkMl的Twitter数据集上表现良好,这表明将模型应用于其他类似问题的机会很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Suicidal Ideation Detection on Social Media: A Machine Learning Approach Artificial Intelligence Techniques to Predict the Infectious Diseases: Open Challenges and Research Issues Brain Tumor Classification by Convolutional Neural Network FDR: An Automated System for Finding Missing People Autism Spectrum Disorder Detection using theDeep Learning Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1