DeepRace: A learning-based data race detector

Ali Tehrani Jamsaz, Mohammed Khaleel, R. Akbari, A. Jannesari
{"title":"DeepRace: A learning-based data race detector","authors":"Ali Tehrani Jamsaz, Mohammed Khaleel, R. Akbari, A. Jannesari","doi":"10.1109/ICSTW52544.2021.00046","DOIUrl":null,"url":null,"abstract":"In this paper, we propose DeepRace, a novel approach toward detecting data race bugs in the source code. We build a deep neural network model to find data race bugs instead of creating a data race detector manually. Our model uses a one-layer convolutional neural network (CNN) with different window sizes to find data race. We adopt the class activation map in order to highlight the line of codes with a data race. Thus, the DeepRace model can detect the data race on a file-level and line of code level. We trained and tested the model with OpenMP and POSIX source code datasets consisting of more than 5000 and 8000 source code files respectively. Comparing to other race detectors, we only had a small number of false positives and false negatives up to 3 and 4 for each OpenMP data race.","PeriodicalId":371680,"journal":{"name":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTW52544.2021.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose DeepRace, a novel approach toward detecting data race bugs in the source code. We build a deep neural network model to find data race bugs instead of creating a data race detector manually. Our model uses a one-layer convolutional neural network (CNN) with different window sizes to find data race. We adopt the class activation map in order to highlight the line of codes with a data race. Thus, the DeepRace model can detect the data race on a file-level and line of code level. We trained and tested the model with OpenMP and POSIX source code datasets consisting of more than 5000 and 8000 source code files respectively. Comparing to other race detectors, we only had a small number of false positives and false negatives up to 3 and 4 for each OpenMP data race.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepRace:一个基于学习的数据竞赛检测器
在本文中,我们提出了DeepRace,一种用于检测源代码中的数据竞争错误的新方法。我们建立了一个深度神经网络模型来发现数据竞争错误,而不是手动创建一个数据竞争检测器。我们的模型使用具有不同窗口大小的单层卷积神经网络(CNN)来发现数据竞争。我们采用类激活映射是为了突出显示具有数据竞争的代码行。因此,DeepRace模型可以在文件级和代码行级检测数据竞争。我们使用OpenMP和POSIX源代码数据集分别训练和测试了超过5000和8000个源代码文件的模型。与其他竞争检测器相比,我们只有少量的假阳性和假阴性,每个OpenMP数据竞争只有3个和4个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effectively Sampling Higher Order Mutants Using Causal Effect Syntax-Tree Similarity for Test-Case Derivability in Software Requirements Automatic Equivalent Mutants Classification Using Abstract Syntax Tree Neural Networks Online GANs for Automatic Performance Testing A Combinatorial Approach to Explaining Image Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1