S. Ly, T. Laurence, N. Shen, B. Hollingsworth, M. Norton, J. Bude
{"title":"Multipulse degradation of fused silica surfaces at 351 nm","authors":"S. Ly, T. Laurence, N. Shen, B. Hollingsworth, M. Norton, J. Bude","doi":"10.1117/12.2195595","DOIUrl":null,"url":null,"abstract":"We investigate the multipulse degradation of fused silica surfaces exposed at 351 nm for up to 109 pulses at pulse fluences greater than 10 J/cm2. In vacuum, the transmission loss increases as a function of the number of shots at low pulse intensity. However, as the pulse intensity increases, the transmission loss decreases and is not measureable above a certain intensity. Transmission loss is highest when measured at shorter wavelengths, and decreases towards the IR. Absorption is the primary mechanism that leads to transmission loss and is from photo-reduction of the silica surface.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2195595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the multipulse degradation of fused silica surfaces exposed at 351 nm for up to 109 pulses at pulse fluences greater than 10 J/cm2. In vacuum, the transmission loss increases as a function of the number of shots at low pulse intensity. However, as the pulse intensity increases, the transmission loss decreases and is not measureable above a certain intensity. Transmission loss is highest when measured at shorter wavelengths, and decreases towards the IR. Absorption is the primary mechanism that leads to transmission loss and is from photo-reduction of the silica surface.